温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2017
第二十二
华罗庚
金杯
少年
数学
邀请赛
武汉
赛区
决赛
试卷
小高组
2017年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小高组)
一、填空题
1.(10分)计算:2017÷2019+= .
2.(10分)如图,圆周上有12个点,将圆周12等分.以这些等分点为四个顶点的矩形共有 个.
3.(10分)如图,已知ABCDEFGHI为正九边形,那么∠DIG= 度.
4.(10分)在黑板上按照从小到大的顺序写出所有能被17或20整除的非零自然数;17,20,34,40,51,60,…那么这列数中排在第289位的数是 .
5.(10分)甲农场有鸡、鸭共625只,乙农场有鸡、鸭共748只.其中乙农场的鸡比甲农场多24%,甲农场的鸭比乙农场少15%,那么乙农场有鸡 只.
6.(10分)已知自然数n有10个约数,2n有20个约数,3n有15个约数,那么6n有 个约数.
7.(10分)甲乙两人进行10公里赛跑,甲跑完全程用了50分钟,此时乙离终点还差500米.为了给乙一次机会,两人约定,第二次赛跑时甲退后500米起跑.假设两次跑步两人速度都不变,则第二次跑步第一个人到达终点时,另一人离终点还差 米.
8.(10分)对于两位数n,A、B、C、D四人有以下的对话:
A:“n能被24整除.”
B:“n能被33整除.”
C:“n能被62整除.”
D:“n的各位数字之和为15.”
其中只有2人的话是正确的,那么n的取值为 .
二、解答下列各题
9.(10分)一个四位数,它本身是一个完全平方数,由它前两位数字及后两位数字组成的两个两位数也都是完全平方数.那么这个四位数是多少?
10.(10分)盒子里有4枚白色棋子和2枚黑色棋子,菲菲分若干次拿走所有棋子,每次至少拿走一枚,共有多少种不同拿法?
11.(10分)熙熙军团的胸章是如图所示的正八边形图案,已知正八边形的边长为18,那么阴影部分的面积是多少?
12.(10分)一个机关锁如图所示,锁上共有八卦和太极共九个按键,依次按下其中四个按键后(按键按下便不可再按),若与正确按法一致则开锁,若不一致则机关重置至初始状态.已知在太极按下之前不可连续按下正对的两个卦象键(例如图中的乾、坤或兑、艮),且正确按法只有一种,那么打开这个机关锁至多需要试多少次?
三、解答下列各题
13.(15分)已知一个长方体的长、宽、高的比为4:3:2,用平面切割,切割面为六边形(如图所示),已知所有这样的六边形的周长最小为36,求这个长方体的表面积.
14.(15分)如图,A、B、C分别是某学校的北门、西门和东门,从测量地图上看,线段AD、AE、DE均为公路,B、C分别在AD、AE上,DC、BE交于P点,△PBC、△PBD、△PCE的面积分别为73000平方米、163000平方米和694000平方米,小叶和小峰步行速度相同.一日,他们放学后同时从北门出发,小叶先跑后走,小峰一直步行,当小叶用3分钟跑到西门时,小峰恰好步行到东门,小叶继续用8分钟跑到D处,然后沿DE步行与从东门到E再往D走的小峰会合,第二天按相同出行方式,如果小峰想在DE路段的中点处于小叶会合,需要比小叶提前多少分钟出发?
2017年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小高组)
参考答案与试题解析
一、填空题
1.(10分)计算:2017÷2019+= 1 .
【分析】先把带分数化成假分数,然后把分子变形进行简算即可.
【解答】解:2017÷2019+
=÷+
=÷+
=÷+
=+
=1
故答案为:1.
2.(10分)如图,圆周上有12个点,将圆周12等分.以这些等分点为四个顶点的矩形共有 15 个.
【分析】
12个等分点是6条直径的端点,以这些等分点为顶点的矩形,一定以其中两条直径为对角线,所以共有=15个矩形,据此解答即可.
【解答】解:12个等分点是6条直径的端点,
共有:==15(个)
答:以这些等分点为四个顶点的矩形共有 15个.
故答案为:15.
3.(10分)如图,已知ABCDEFGHI为正九边形,那么∠DIG= 60° 度.
【分析】可以利用九边形的内角和,以及三角形的内角和,作辅助线,连接正九边形的中心,则OI=OD=OG,从而可以求得∠DIG的度数.
【解答】解:根据分析,如图,O为正九边形中心,则OI=OD=OG,
∠DIG=∠DIO+∠OIG
=
=∠DOG
=×(360°÷9×3)
=60°
故答案是:60°.
4.(10分)在黑板上按照从小到大的顺序写出所有能被17或20整除的非零自然数;17,20,34,40,51,60,…那么这列数中排在第289位的数是 2737 .
【分析】先根据17和20的公倍数,算出数列的周期,再算出每个周期有多少个数,即可求出第289位数是多少
【解答】解:根据分析,17和20的倍数交替出现,17和20的最小公倍数为340,
易知,1~340为一个周期,每个周期中列出了17+20﹣1个数,
289=36×8+1∴数列中第289个数是:340×8+17=2737
故答案为:2737
5.(10分)甲农场有鸡、鸭共625只,乙农场有鸡、鸭共748只.其中乙农场的鸡比甲农场多24%,甲农场的鸭比乙农场少15%,那么乙农场有鸡 248 只.
【分析】根据“乙农场的鸡比甲农场多24%,”可得:甲农场的鸡是乙农场的鸡的1÷(1+24%)=;根据“甲农场的鸭比乙农场少15%”可得:甲农场的鸭是乙农场的鸭的1﹣15%=;假设甲农场的鸡鸭都是乙农场的鸡鸭的,则多算了(748×﹣625),对应着分率也多了鸡的(﹣),由此用除法解答即可求出乙农场的鸡的只数.
【解答】解:1÷(1+24%)=
1﹣15%=
(748×﹣625)÷(﹣)
=10.8÷
=248(只)
答:乙农场有鸡 248只.
故答案为:248.
6.(10分)已知自然数n有10个约数,2n有20个约数,3n有15个约数,那么6n有 30 个约数.
【分析】n有10个约数,而2n有20个约数,按约数和定理,得知n的分解式中不含有2,3n有15个约数,假设3n的分解式中不含有3,则3n的约数应该是(1+1)×10=20个,则n的分解式中含有一个3,6n分成2×3×n,再根据约数和定理,可以求得约数的个数.
【解答】解:根据分析,n有10个约数,2n有20个约数,
按约数和定理,又∵,∴n的质因数分解式中含有0个2;
设n=3amx,又∵,∴n的质因数分解式中含有一个3,
根据约数和定理,得n的约数和为:(a+1)(x+1)=10,
解得:a=1,x=4,此时n=3×m4;
故6n=2×3×n=2×3×3×m4=2×32×m4,
其约数和为:(1+1)×(2+1)(4+1)=2×3×5=30,
故答案是:30.
7.(10分)甲乙两人进行10公里赛跑,甲跑完全程用了50分钟,此时乙离终点还差500米.为了给乙一次机会,两人约定,第二次赛跑时甲退后500米起跑.假设两次跑步两人速度都不变,则第二次跑步第一个人到达终点时,另一人离终点还差 25 米.
【分析】首先找到不变量是时间,两人两次赛跑的时间是相同的,路程是成比例关系.
【解答】解:依题意可知:
当甲跑全程10公里时即10000米,乙跑全程的10000﹣500=9500米,两人跑的时间相同,路程成比例关系.
即10000:9500=20:19=(10000+500):9975.
当甲跑完10500米时,乙跑9975米.
还差10000﹣9975=25(米)
故答案为:25
8.(10分)对于两位数n,A、B、C、D四人有以下的对话:
A:“n能被24整除.”
B:“n能被33整除.”
C:“n能被62整除.”
D:“n的各位数字之和为15.”
其中只有2人的话是正确的,那么n的取值为 96 .
【分析】四个人只有两个人的话是正确的,B、C的话都要求n的数字和是9的倍数,与的D的话矛盾,从四个人的话中找到共同点和不同的,以及矛盾的点,即可判断谁的话是正确的.
【解答】解:根据分析,B、C的话都要求n的数字和是9的倍数,
而C要求n的数字之和为15,若D正确,则B、C错误,所以A正确,n=24×3=96
若D错误,则24 和 33、62和33、24 和62的最小公倍数均大于100,矛盾
综上所述,n的取值为96
故答案为:96.
二、解答下列各题
9.(10分)一个四位数,它本身是一个完全平方数,由它前两位数字及后两位数字组成的两个两位数也都是完全平方数.那么这个四位数是多少?
【分析】可以先假设这个四位数为,分两半,前两位和后两位,再根据完全平方数的性质,可以在两位数里缩小范围,最后分别确定这两个两位数.
【解答】解:根据分析,设这个四位数为=n2,∵前两位是完全平方数,故≥16,∴n≥41,又∵,均为完全平方数,∴后两位≥2n﹣1≥2×41﹣1=81,∴=81,=16,此四位数为1681,故答案是:1681.
10.(10分)盒子里有4枚白色棋子和2枚黑色棋子,菲菲分若干次拿走所有棋子,每次至少拿走一枚,共有多少种不同拿法?
【分析】可以将将白棋看作列,黑棋看作行,则每次拿走若干棋子后,转化为左、下某一个点的情况,然后构造图,最后求得不同的拿法.
【解答】解:根据分析,如图将白棋看作列,黑棋看作行,则每次拿走若干棋子后,
转化为左、下某一个点的情况,所以构造如图:
每个格点上标的数等于这点左、下所有格点各数之和,
所以4枚白棋2枚黑棋共有208种不同拿法.
故答案是:208.
11.(10分)熙熙军团的胸章是如图所示的正八边形图案,已知正八边形的边长为18,那么阴影部分的面积是多少?
【分析】按题意,将图等积变形,将阴影部分的面积转化为求其它三角形的面积,最后转化为S阴影=4S△ABO==182=324.
【解答】解:根据分析,如图,
S阴影=2S△ABO+2S△COD,显然S△COE=S△COD=S△BOA,故:
S阴影=4S△ABO==182=324
故答案是:324.
12.(10分)一个机关锁如图所示,锁上共有八卦和太极共九个按键,依次按下其中四个按键后(按键按下便不可再按),若与正确按法一致则开锁,若不一致则机关重置至初始状态.已知在太极按下之前不可连续按下正对的两个卦象键(例如图中的乾、坤或兑、艮),且正确按法只有一种,那么打开这个机关锁至多需要试多少次?
【分析】从九个按键中依此按4个,有9×8×7=3024(种),其中前两次相对的有8×1×7×6=336(种),中间两次相对且第一步不是太极的有8×6×1×6=288(种),末两次相对,前两部不相对且部署太极的有8×6×4×1=192(种),最后求和.
【解答】解:根据分析,从九个按键中依此按4个,有9×8×7=3024(种);
其中前两次相对的有8×1×7×6=336(种);
中间两次相对且第一步不是太极的有8×6×1×6=288(种);
末两次相对,前两步不相对且不是太极的有8×6×4×1=192(种);
所以所有可以按的方法有:3024﹣336﹣288﹣192=2208(种).
即至多需要试2208次.
故答案是:2208.
三、解答下列各题
13.(15分)已知一个长方体的长、宽、高的比为4:3:2,用平面切割,切割面为六边形(如图所示),已知所有这样的六边形的周长最小为36,求这个长方体的表面积.
【分析】按题意,长方体的长、宽、高的比为4:3:2,而六边形周长最小,则六边形的六条边在展开图上应构成一条线段,此时可以求出长方体的长、宽、高,表面积也即可求得.
【解答】解:根据分析,长方体展开图如下图:(AB与CE是同一条棱,P与Q是同一点)
所以周长最小时,六边形的六条边在展开图上应构成一条线段,
所以长方体表面积为:2×(长×宽+长×高+宽×高)=2×(2×3+3×4+4×2)×[()2÷2]=416,
故答案是:416.
14.(15分)如图,A、B、C分别是某学校的北门、西门和东门,从测量地图上看,线段AD、AE、DE均为公路,B、C分别在AD、AE上,DC、BE交于P点,△PBC、△PBD、△PCE的面积分别为73000平方米、163000平方米和694000平方米,小叶和小峰步行速度相同.一日,他们放学后同时从北门出发,小叶先跑后走,小峰一直步行,当小叶用3分钟跑到西门时,小峰恰好步行到东门,小叶继续用8分钟跑到D处,然后沿DE步行与从东门到E再往D走的小峰会合,第二天按相同出行方式,如果小峰想在DE路段的中点处于小叶会合,需要比小叶提前多少分钟出发?
【分析】首先分析各个线段之间的比例关系,找到两段距离的路程之间的关系,做差即可.
【解答】解:依题意可知:
=,==•=×=;
所以小峰走CE需要26分钟,如果小峰想在DE路段的中点处和小叶会和,此时需要小叶提前26﹣8=18(分).
答:如果小峰想在DE路段的中点处于小叶会合,需要比小叶提前18分钟.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/5/7 11:03:18;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800
第11页(共11页)