分享
2017中考数学压轴试题复习第一部分专题二因动点产生的等腰三角形问题201707071107.doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2017 中考 数学 压轴 试题 复习 第一 部分 专题 产生 等腰三角形 问题 201707071107
§1.2 因动点产生的等腰三角形问题 课前导学 我们先回顾两个画图问题: 1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么? 2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么? 已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C. 已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外. 在讨论等腰三角形的存在性问题时,一般都要先分类. 如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况. 解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快. 几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢? 如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法. ①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么. 代数法一般也分三步:罗列三边长,分类列方程,解方程并检验. 如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来. 图1 图2 图3 例 9 2014年长沙市中考第26题 如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0, 2). (1)求a、b、c的值; (2)求证:在点P运动的过程中,⊙P始终与x轴相交; (3)设⊙P与x轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标. 图1 动感体验 请打开几何画板文件名“14长沙26”,拖动圆心P在抛物线上运动,可以体验到,圆与x轴总是相交的,等腰三角形AMN存在五种情况. 思路点拨 1.不算不知道,一算真奇妙,原来⊙P在x轴上截得的弦长MN=4是定值. 2.等腰三角形AMN存在五种情况,点P的纵坐标有三个值,根据对称性,MA=MN和NA=NM时,点P的纵坐标是相等的. 图文解析 (1)已知抛物线的顶点为(0,0),所以y=ax2.所以b=0,c=0. 将代入y=ax2,得.解得(舍去了负值). (2)抛物线的解析式为,设点P的坐标为. 已知A(0, 2),所以>. 而圆心P到x轴的距离为,所以半径PA>圆心P到x轴的距离. 所以在点P运动的过程中,⊙P始终与x轴相交. (3)如图2,设MN的中点为H,那么PH垂直平分MN. 在Rt△PMH中,,,所以MH2=4. 所以MH=2.因此MN=4,为定值. 等腰△AMN存在三种情况: ①如图3,当AM=AN时,点P为原点O重合,此时点P的纵坐标为0. 图2 图3 ②如图4,当MA=MN时,在Rt△AOM中,OA=2,AM=4,所以OM=2. 此时x=OH=2.所以点P的纵坐标为. 如图5,当NA=NM时,根据对称性,点P的纵坐标为也为. 图4 图5 ③如图6,当NA=NM=4时,在Rt△AON中,OA=2,AN=4,所以ON=2. 此时x=OH=2.所以点P的纵坐标为. 如图7,当MN=MA=4时,根据对称性,点P的纵坐标也为. 图6 图7 考点伸展 如果点P在抛物线上运动,以点P为圆心的⊙P总经过定点B(0, 1),那么在点P运动的过程中,⊙P始终与直线y=-1相切.这是因为: 设点P的坐标为. 已知B(0, 1),所以. 而圆心P到直线y=-1的距离也为,所以半径PB=圆心P到直线y=-1的距离.所以在点P运动的过程中,⊙P始终与直线y=-1相切. 例 10 2014年湖南省张家界市中考第25题 如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+c(a≠0)过O、B、C三点,B、C坐标分别为(10, 0)和,以OB为直径的⊙A经过C点,直线l垂直x轴于B点. (1)求直线BC的解析式; (2)求抛物线解析式及顶点坐标; (3)点M是⊙A上一动点(不同于O、B),过点M作⊙A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想mn的值,并证明你的结论; (4)若点P从O出发,以每秒1个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0<t≤8)秒时恰好使△BPQ为等腰三角形,请求出满足条件的t值. 图 图1 动感体验 请打开几何画板文件名“14张家界25”,拖动点M在圆上运动,可以体验到,△EAF保持直角三角形的形状,AM是斜边上的高.拖动点Q在BC上运动,可以体验到,△BPQ有三个时刻可以成为等腰三角形. 思路点拨 1.从直线BC的解析式可以得到∠OBC的三角比,为讨论等腰三角形BPQ作铺垫. 2.设交点式求抛物线的解析式比较简便. 3.第(3)题连结AE、AF容易看到AM是直角三角形EAF斜边上的高. 4.第(4)题的△PBQ中,∠B是确定的,夹∠B的两条边可以用含t的式子表示.分三种情况讨论等腰三角形. 图文解析 (1)直线BC的解析式为. (2)因为抛物线与x轴交于O、B(10, 0)两点,设y=ax(x-10). 代入点C,得.解得. 所以. 抛物线的顶点为. (3)如图2,因为EF切⊙A于M,所以AM⊥EF. 由AE=AE,AO=AM,可得Rt△AOE≌Rt△AME. 所以∠1=∠2. 同理∠3=∠4. 于是可得∠EAF=90°. 所以∠5=∠1.由tan∠5=tan∠1,得. 所以ME·MF=MA2,即mn=25. 图2 (4)在△BPQ中,cos∠B=,BP=10-t,BQ=t. 分三种情况讨论等腰三角形BPQ: ①如图3,当BP=BQ时,10-t=t.解得t=5. ②如图4,当PB=PQ时,.解方程,得. ③如图5,当QB=QP时,.解方程,得. 图3 图4 图5 考点伸展 在第(3)题条件下,以EF为直径的⊙G与x轴相切于点A. 如图6,这是因为AG既是直角三角形EAF斜边上的中线,也是直角梯形EOBF的中位线,因此圆心G到x轴的距离等于圆的半径,所以⊙G与x轴相切于点A. 图6 例 11 2014年湖南省邵阳市中考第26题 在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C. (1)若m=2,n=1,求A、B两点的坐标; (2)若A、B两点分别位于y轴的两侧,C点坐标是(0,-1),求∠ACB的大小; (3)若m=2,△ABC是等腰三角形,求n的值. 动感体验 请打开几何画板文件名“14邵阳26”,点击屏幕左下方的按钮(2),拖动点A在x轴正半轴上运动,可以体验到,△ABC保持直角三角形的形状.点击屏幕左下方的按钮(3),拖动点B在x轴上运动,观察△ABC的顶点能否落在对边的垂直平分线上,可以体验到,等腰三角形ABC有4种情况. 思路点拨 1.抛物线的解析式可以化为交点式,用m,n表示点A、B、C的坐标. 2.第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比. 3.第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程. 图文解析 (1)由y=x2-(m+n)x+mn=(x-m)(x-n),且m>n,点A位于点B的右侧,可知 A(m, 0),B(n, 0). 若m=2,n=1,那么A(2, 0),B(1, 0).. (2)如图1,由于C(0, mn),当点C的坐标是(0,-1),mn=-1,OC=1. 若A、B两点分别位于y轴的两侧,那么OA·OB=m(-n)=-mn=1. 所以OC2=OA·OB.所以. 所以tan∠1=tan∠2.所以∠1=∠2. 又因为∠1与∠3互余,所以∠2与∠3互余. 所以∠ACB=90°. 图1 图2 图3 (3)在△ABC中,已知A(2, 0),B(n, 0),C(0, 2n). 讨论等腰三角形ABC,用代数法解比较方便: 由两点间的距离公式,得AB2=(n-2)2,BC2=5n2,AC2=4+4n2. ①当AB=AC时,解方程(n-2)2=4+4n2,得(如图2). ②当CA=CB时,解方程4+4n2=5n2,得n=-2(如图3),或n=2(A、B重合,舍去). ③当BA=BC时,解方程(n-2)2=5n2,得(如图4),或(如图5). 图4 图5 考点伸展 第(2)题常用的方法还有勾股定理的逆定理. 由于C(0, mn),当点C的坐标是(0,-1),mn=-1. 由A(m, 0),B(n, 0),C(0,-1),得AB2=(m-n)2=m2-2mn+n2=m2+n2+2, BC2=n2+1,AC2=m2+1. 所以AB2=BC2+AC2.于是得到Rt△ABC,∠ACB=90°. 第(3)题在讨论等腰三角形ABC时,对于CA=CB的情况,此时A、B两点关于y轴对称,可以直接写出B(-2, 0),n=-2. 例 12 2014年湖南省娄底市中考第27题 如图1,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连结PQ,设运动时间为t(s)(0<t<4),解答下列问题: (1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少? (2)如图2,连结PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值; (3)当t为何值时,△APQ是等腰三角形? 图1 图2 动感体验 请打开几何画板文件名“14娄底27”,拖动点Q在AC上运动,可以体验到,当点P运动到AB的中点时,△APQ的面积最大,等腰三角形APQ存在三种情况.还可以体验到,当QC=2HC时,四边形PQP′C是菱形. 思路点拨 1.在△APQ中,∠A是确定的,夹∠A的两条边可以用含t的式子表示. 2.四边形PQP′C的对角线保持垂直,当对角线互相平分时,它是菱形,. 图文解析 (1)在Rt△ABC中,AC=4,BC=3,所以AB=5,sinA=,cosA=. 作QD⊥AB于D,那么QD=AQ sinA=t. 所以S=S△APQ====. 当时,S取得最大值,最大值为. (2)设PP′与AC交于点H,那么PP′⊥QC,AH=APcosA=. 如果四边形PQP′C为菱形,那么PQ=PC.所以QC=2HC. 解方程,得. 图3 图4 (3)等腰三角形APQ存在三种情况: ①如图5,当AP=AQ时,5-t=t.解得. ②如图6,当PA=PQ时,.解方程,得. ③如图7,当QA=QP时,.解方程,得. 图5 图6 图7 考点伸展 在本题情境下,如果点Q是△PP′C的重心,求t的值. 如图8,如果点Q是△PP′C的重心,那么QC=HC. 解方程,得. 图8 例 13 2015年湖南省怀化市中考第22题 如图1,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒. (1)在运动过程中,求P、Q两点间距离的最大值; (2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式; (3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形.若存在,求出此时的t值,若不存在,请说明理由.(,结果保留一位小数) 图1 动感体验 请打开几何画板文件名“15怀化22”,拖动点P在AC上运动,可以体验到,PQ与BD保持平行,等腰三角形PQC存在三种情况. 思路点拨 1.过点B作QP的平行线交AC于D,那么BD的长就是PQ的最大值. 2.线段PQ扫过的面积S要分两种情况讨论,点Q分别在AB、BC上. 3.等腰三角形PQC分三种情况讨论,先罗列三边长. 图文解析 (1)在Rt△ABC中,AC=8,BC=6,所以AB=10. 如图2,当点Q在AB上时,作BD//PQ交AC于点D,那么. 所以AD=5.所以CD=3. 如图3,当点Q在BC上时,. 又因为,所以.因此PQ//BD.所以PQ的最大值就是BD. 在Rt△BCD中,BC=6,CD=3,所以BD=.所以PQ的最大值是. 图2 图3 图4 (2)①如图2,当点Q在AB上时,0<t≤5,S△ABD=15. 由△AQP∽△ABD,得.所以S=S△AQP==. ②如图3,当点Q在BC上时,5<t≤8,S△ABC=24. 因为S△CQP===, 所以S=S△ABC-S△CQP=24-(t-8)2=-t2+16t-40. (3)如图3,当点Q在BC上时,CQ=2CP,∠C=90°,所以△PQC不可能成为等腰三角形. 当点Q在AB上时,我们先用t表示△PQC的三边长:易知CP=8-t. 如图2,由QP//BD,得,即.所以. 如图4,作QH⊥AC于H.在Rt△AQH中,QH=AQ sin∠A=,AH=. 在Rt△CQH中,由勾股定理,得CQ==. 分三种情况讨论等腰三角形PQC: (1)①当PC=PQ时,解方程,得≈3.4(如图5所示). ②当QC=QP时,.整理,得. 所以(11t-40)(t-8)=0.解得≈3.6(如图6所示),或t=8(舍去). ③当CP=CQ时,.整理,得. 解得=3.2(如图7所示),或t=0(舍去). 综上所述,当t的值约为3.4,3.6,或等于3.2时,△PQC是等腰三角形. 图5 图6 图7 考点伸展 第(1)题求P、Q两点间距离的最大值,可以用代数计算说理的方法: ①如图8,当点Q在AB上时,PQ===. 当Q与B重合时,PQ最大,此时t=5,PQ的最大值为. ②如图9,当点Q在BC上时,PQ===. 当Q与B重合时,PQ最大,此时t=5,PQ的最大值为. 综上所述,PQ的最大值为. 图8 图9

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开