温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(一)回归分析的基本思想及其初步应用(25分钟60分)一、选择题(每小题5分,共25分)1.下列三个说法:(1)残差平方和越小的模型,拟合的效果越好;(2)用R2来刻画回归的效果时,R2的值越小,说明模型拟合的效果越好;(3)直线=x+和各点(x1,y1),(x2,y2),…,(xn,yn)的偏差[yi-(xi+)]2是该坐标平面上所有直线中与这些点的偏差最小的直线.其中正确的个数为()A.1个B.2个C.3个D.4个【解析】选B.由R2的定义可知:R2越接近于1,表明两个随机变量线性相关性越强,所以(2)不正确,其余说法正确.2.某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温x(℃)181310-1用电量y(度)24343864由表中数据得回归直线方程=x+中≈-2,预测当气温为-4℃时,用电量的度数约为()A.68℃B.67℃C.66℃D.65℃【解析】选A.由表格得(,)为(10,40),又(,)在回归方程=x+上且≈-2,所以40=10×(-2)+,解得:=60,所以=-2x+60.当x=-4时,=-2×(-4)+60=68.3.(2014·重庆高考)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据测算的线性回归方程可能是()A.=0.4x+2.3B.=2x-2.4C.=-2x+9.5D.=-0.3x+4.4【解题指南】根据正相关可知斜率为正,再根据线性回归方程经过点(,)可求出结果.【解析】选A.由正相关可知斜率为正,故可排除C,D两项,又因为=0.4x+2.3经过点(3,3.5),故A项正确.【补偿训练】(2015·临沂高二检测)某饮料店的日销售收入y(单位:百元)与当天平均气温x(单位:度)之间有下列数据关系:x-2-1012y54221甲、乙、丙三位同学对上述数据进行了研究,分别得到了x与y之间的三个线性回归方程:①y=-x+2.8,②y=-x+3,③y=-1.2x+2.6;其中正确的是()A.①B.②C.③D.①③【解析】选A.回归方程=x+表示的直线必过点(,),即必过点(0,2.8),而给出的三个线性回归方程中,只有①表示的直线过点(0,2.8),故正确的是①.4.(2015·泰安高二检测)在回归分析中,R2的值越大,说明残差平方和()A.越大B.越小C.可能大也可能小D.以上均错【解析】选B.因为R2=所以当R2越大时,(yi-)2越小,即残差平方和越小.5.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元)6.27.58.08.59.8根据上表可得回归直线方程=x+,其中=0.76,=-.据此估计,该社区一户年收入为...