温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
练习
高中数学人教A版选修2-2
第二章2.1.1归纳推理【练习】
高中
学人
选修
第二
2.1
归纳推理
选修2-2 2.1.1 归纳推理
一、选择题:
1. 关于归纳推理,下列说法正确的是( )
A.归纳推理是一般到一般的推理 B.归纳推理是一般到个别的推理
C.归纳推理的结论一定是正确的 D.归纳推理的结论是或然性的
【答案】D
【解析】归纳推理是由特殊到一般的推理,其结论的正确性不一定.故应选D.
2.下列推理是归纳推理的是( )
A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式
C.由圆x2+y2=r2的面积πr2,猜出椭圆+=1的面积S=πab
D.科学家利用鱼的沉浮原理制造潜艇
【答案】B
【解析】由归纳推理的定义知B是归纳推理,故应选B.
3.数列{an}:2,5,11,20,x,47,…中的x等于( )
A.28 B.33 C.32 D.27
【答案】C
【解析】因为5-2=3×1,11-5=6=3×2,20-11=9=3×3,猜测x-20=3×4,47-x=3×5,推知x=32.故应选C.
4.在数列{an}中,a1=0,an+1=2an+2,则猜想an是( )
A.2n-1+1 B.2n-2 C.2n-2- D.2n+1-4
【答案】A
【解析】 ∵a1=0=21-2,
∴a2=2a1+2=2=22-2,
a3=2a2+2=4+2=6=23-2,
a4=2a3+2=12+2=14=24-2,
……
猜想an=2n-2.
故应选A.
5.某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入a元定期储蓄,若年利率为p且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( )
A.a(1+p)7 B.a(1+p)8 C. D.
【答案】D
【解析】到2006年5月10日存款及利息为a(1+p).
到2007年5月10日存款及利息为a(1+p)(1+p)+a(1+p)=a
到2008年5月10日存款及利息为a(1+p)+a(1+p)
=a
……
所以到2012年5月10日存款及利息为
a
=a
=.
故应选D.
6.(2010·山东文,10)观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )
A.f(x) B.-f(x) C.g(x) D.-g(x)
【答案】D
【解析】本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数,
∴g(-x)=-g(x),选D,体现了对学生观察能力,概括归纳推理的能力的考查.
二、 填空题
7.观察下列由火柴杆拼成的一列图形中,第n个图形由n个正方形组成:
通过观察可以发现:第4个图形中,火柴杆有________根;第n个图形中,火柴杆有________根.
【答案】13,3n+1
【解析】第一个图形有4根,第2个图形有7根,第3个图形有10根,第4个图形有13根……猜想第n个图形有3n+1根.
8.从1=12,2+3+4=32,3+4+5+6+7=52中,可得一般规律是__________________.
【答案】n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
【解析】第1式有1个数,第2式有3个数相加,第3式有5个数相加,故猜想第n个式子有2n-1个数相加,且第n个式子的第一个加数为n,每数增加1,共有2n-1个数相加,故第n个式子为:
n+(n+1)+(n+2)+…+{n+}=(2n-1)2,
即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.
9.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是S,按此规律推出S与n的关系式为________.
【答案】S=4(n-1)(n≥2)
【解析】每条边上有2个圆圈时共有S=4个;每条边上有3个圆圈时,共有S=8个;每条边上有4个圆圈时,共有S=12个.可见每条边上增加一个点,则S增加4,∴S与n的关系为S=4(n-1)(n≥2).
10.(2009·浙江理,15)观察下列等式:
C+C=23-2,
C+C+C=27+23,
C+C+C+C=211-25,
C+C+C+C+C=215+27,
……
由以上等式推测到一个一般的结论:
对于n∈N*,C+C+C+…+C=__________________.
【答案】24n-1+(-1)n22n-1
【解析】本小题主要考查归纳推理的能力
等式右端第一项指数3,7,11,15,…构成的数列通项公式为an=4n-1,第二项指数1,3,5,7,…的通项公式bn=2n-1,两项中间等号正、负相间出现,∴右端=24n-1+(-1)n22n-1.