新课标选修(1-2)第三章数系的扩充与复数的引入测试题一、选择题1.复数z是实数的充要条件是()A.zzB.zzC.2z为实数D.zz为实数答案:B2.若复数z满足1012zzi,则z等于()A.34iB.34iC.34iD.34i答案:D3.满足条件22ziz的复数z在复平面内对应的点的轨迹是.A.双曲线B.双曲线的一支C.两条射线D.一条射线答案:B4.若xC,则方程13xix的解是()A.1322iB.1241xx,C.43iD.1322i答案:C5.213(3)ii等于()A.1344iB.1344iC.1322iD.1322i答案:B6.若342zi≤,则z的最大值是()1A.3B.7C.9D.5答案:B三、填空题7.设12zi,213zi,则虚数215zizz的实部为.答案:08.复数22(32)(28)zmmmmi的共轭复数在复平面上的对应点在第一象限内,则实数m的取范围是.答案:(21)(24),,9.已知1z,则复数234zi,对应点的轨迹是.答案:以(34),为圆心,以2为半径的圆10.已知复数1coszi,2sinzi,则12zz·的最大值与最小值之和为.答案:32211.设222log(33)log(3)()zmmimmR,若z对应的点在直线210xy上,则m的值是.答案:1512.已知复数z满足11z,且1iz是纯虚数,则复数z的值为.答案:0或2三、解答题13.证明:在复数范围内,方程255(1)(1)2izizizi(i为虚数单位)无解.2证明:原方程化简为2(1)(1)13zizizi.设()zxyixyR,,代入上述方程得22(22)13xyxyii.221223xyyx,①∴,②将②代入①,得281250xx.()144160160 ,∴方程()无实数解,∴原方程在复数范围内无解.14.设ab,为共轭复数,且2()346ababii,求a和b.解:设axyi,则()bxyixyR,由条件得2()3()()46xyixyixyixyiii,即22243()46xxyii,由复数相等的充要条件,得222443()6xxy,.解得11xy,.11aibi,;∴11aibi,;11aibi,;11aibi,.15.设复数z满足5z,且(34)iz在复平面上对应的点在第二、四象限的角平分线上,252()zmmR,求z和m的值.解:设()zxyixyR,,又5z,2225xy∴.①(34)(34)()(34)(43)izixyixyxyi...