温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
选修1-1
人教
数学
选修
作业
1.1
命题
答案
第一章 常用逻辑用语
§1.1 命题及其关系
1.1.1 命 题
课时目标 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.
1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.
2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.
一、选择题
1.下列语句中是命题的是( )
A.周期函数的和是周期函数吗?
B.sin 45°=1
C.x2+2x-1>0
D.梯形是不是平面图形呢?
2.下列语句中,能作为命题的是( )
A.3比5大 B.太阳和月亮
C.高年级的学生 D.x2+y2=0
3.下列命题中,是真命题的是( )
A.{x∈R|x2+1=0}不是空集
B.若x2=1,则x=1
C.空集是任何集合的真子集
D.x2-5x=0的根是自然数
4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:
①M的元素都不是P的元素;
②M中有不属于P的元素;
③M中有P的元素;
④M中元素不都是P的元素.
其中真命题的个数为( )
A.1 B.2 C.3 D.4
5.命题“6的倍数既能被2整除,也能被3整除”的结论是( )
A.这个数能被2整除
B.这个数能被3整除
C.这个数既能被2整除,也能被3整除
D.这个数是6的倍数
6.在空间中,下列命题正确的是( )
A.平行直线的平行投影重合
B.平行于同一直线的两个平面平行
C.垂直于同一平面的两个平面平行
D.垂直于同一平面的两条直线平行
题号
1
2
3
4
5
6
答案
二、填空题
7.下列命题:①若xy=1,则x,y互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac2>bc2,则a>b.其中真命题的序号是________.
8.命题“奇函数的图象关于原点对称”的条件p是__________________________,结论q是________________________________.
9.下列语句是命题的是________.
①求证是无理数;
②x2+4x+4≥0;
③你是高一的学生吗?
④一个正数不是素数就是合数;
⑤若x∈R,则x2+4x+7>0.
三、解答题
10.把下列命题改写成“若p,则q”的形式,并判断真假.
(1)偶数能被2整除.
(2)当m>时,mx2-x+1=0无实根.
11.设有两个命题:p:x2-2x+2≥m的解集为R;q:函数f(x)=-(7-3m)x是减函数,若这两个命题中有且只有一个是真命题,求实数m的取值范围.
能力提升
12.设非空集合S={x|m≤x≤l}满足:当x∈S时,有x2∈S.给出如下三个命题:
①若m=1,则S={1};②若m=-,则≤l≤1;
③若l=,则-≤m≤0.
其中正确命题的个数是( )
A.0 B.1 C.2 D.3
13.设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
①若α⊥γ,β⊥γ,则α∥β;
②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;
③若α∥β,l⊂α,则l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中真命题的个数是( )
A.1 B.2 C.3 D.4
1.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题.
2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.
3.在判断命题的条件和结论时,可以先将命题改写成“若p则q”的形式,改法不一定唯一.
第一章 常用逻辑用语
§1.1 命题及其关系
1.1.1 命题
答案
知识梳理
1.真假 陈述句 真 假
2.条件 结论
作业设计
1.B [A、D是疑问句,不是命题,C中语句不能判断真假.]
2.A [判断一个语句是不是命题,关键在于能否判断其真假.“3比5大”是一个假命题.]
3.D [A中方程在实数范围内无解,故是假命题;B中若x2=1,则x=±1,故B是假命题;因空集是任何非空集合的真子集,故C是假命题;所以选D.]
4.B [命题②④为真命题.]
5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]
6.D
7.①④
解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形.
8.若一个函数是奇函数 这个函数的图象关于原点对称
9.②④⑤
解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数既不是素数也不是合数,②⑤是真命题,x2+4x+4=(x+2)2≥0恒成立,x2+4x+7=(x+2)2+3>0恒成立.
10.解 (1)若一个数是偶数,则这个数能被2整除,真命题.
(2)若m>,则mx2-x+1=0无实数根,真命题.
11.解 若命题p为真命题,可知m≤1;
若命题q为真命题,则7-3m>1,即m<2.
所以命题p和q中有且只有一个是真命题时,有p真q假或p假q真,
即或
故m的取值范围是1<m<2.
12.D [①m=1时,l≥m=1且x2≥1,
∴l=1,故①正确.
②m=-时,m2=,故l≥.
又l≤1,∴②正确.
③l=时,m2≤且m≤0,则-≤m≤0,
∴③正确.]
13.B [①由面面垂直知,不正确;
②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;
③由线面平行判定定理知,正确;
④由线面相交、及线面、线线平行分析知,正确.
综上所述知,③,④正确.]