疱工巧解牛知识•巧学一、向量的加法求任意两个向量和的运算,叫做向量的加法,两个向量的和仍是向量.由于向量是自由平移的对两个向量进行求和的过程,可按以下两个法则进行.1.三角形法则已知非零向量a、b,在平面内任取一点A,作=a,=b,则向量叫做向量a、b的和,记作a+b,即a+b=+=.(1)利用向量加法的三角形法则求两个向量的和如图2-2-1(1)、(2)、(3)中,=a,=b,则+=.图2-2-1图2-2-1的(1)、(2)、(3)中各有两个向量,只要把其中一个向量的起点平移,使之与第二个向量的终点重合,则从第一个向量的起点指向第二个向量终点的向量,就是两个向量的和向量.(2)向量加法的三角形法则适用的范围及应用①三角形法则对于两个向量共线时也适用.对于零向量,课本规定a+0=0+a=a(a≠0),我们可利用三角形法则,通过几何作图法作出a+0,0+a,a,观察结果,去认识规定的合理性.图2-2-2②任何一个向量均可以写成两个任意向量之和,只要注意到这个向量的起点、终点即可,如:=+,如图2-2-2所示,这里的O点具有任意性.学法一得对于首尾相连的两个向量的和,等于以第一个向量的起点为起点,以第二个向量的终点为终点的向量,这就是向量加法的三角形法则的几何意义.记忆要诀不管平面内的点O选在何处,对于首尾相连的两个向量的和向量,它的方向总是由第一个向量的起点指向第二个向量的终点.二、平行四边形法则1.以同一点A为起点的两个已知向量a、b为邻边作平行四边形ABCD,则以A为起点的对角线就是a与b的和.这种作两个向量和的方法叫做向量加法的平行四边形法则.图2-2-32.用向量加法的平行四边形法则求两个向量的和时要注意以下几点:(1)当两个向量共线时,不能用平行四边形法则求和,因为不可能以两平行向量为邻边作平行四边形,所以,平行四边形法则对于两个向量共线时是不适用的.(2)用向量加法的平行四边形法则求两个向量的和时,可在空间任取一点O,使两个向量的起点同时移到点O上去,也可把其中一个向量的起点移到另一个向量的起点上去,再作和.学法一得以从同一点O出发的两个向量为邻边作平行四边形,则从公共点O出发的对角线表示的向量就是两个向量的和,这就是向量加法的平行四边形法则的几何意义.三、向量加法的交换律和结合律1.向量加法的交换律先看看求两个向量和时,两个向量相加的次序能否交换.图2-2-4让我们回到加法的定义.已知向量a、b,如图2-2-4所示,作=a,=b,如果A、B、C不共线,则=a+b.再看看b+a等于什么?作=b,连结,如果我们能证明=a,那么也就证明...