温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
整合
【整合】人教A版高二数学选修2-2
第二章
第二节
2.2.1直接证明-综合法与分析法同步教案
人教
版高二
数学
选修
第二
2.2
直接
证明
综合法
分析
同步
教案
§2.2.1直接证明--综合法与分析法
教学目标:
1.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;
2.通过本节内容的学习了解分析法和综合法的思考过程、特点;
3.增强学生的数学应用意识,提高学生数学思维的情趣,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度。
教学重点:分析法和综合法的思考过程;
教学难点:分析法和综合法的思考过程、特点.
教学过程设计
(一)、情景引入,激发兴趣。
【教师引入】 合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的。数学结论的正确性必须通过逻辑推理的方式加以证明。本节我们将学习两类基本的证明方法:直接证明与间接证明。
(二)、探究新知,揭示概念
探究一:在数学证明中,我们经常从已知条件和某些数学定义、公理、定理等出发,通过推理推导出所要的结论。例如:
已知a,b>0,求证
教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。教师最后归结证明方法。
学生活动:充分讨论,思考,找出以上问题的证明方法
证明:因为,
所以。
因为,
所以。
因此 。
一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种方法叫做综合法。
探究二:证明数学命题时,还经常从要证的结论 Q 出发,反推回去,寻求保证 Q 成立的条件,即使Q成立的充分条件P1,为了证明P1成立,再去寻求P1成立的充分条件P2,为了证明P2成立,再去寻求P2成立的充分条件P3,…… 直到找到一个明显成立的条件(已知条件、定理、定义、公理等)为止。
例如:基本不等式 (a>0,b>0)的证明就用了上述方法。
要证
,
只需证
,
只需证
,
只需证
由于显然成立,因此原不等式成立。
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止。这种方法叫做分析法。
(三)、分析归纳,抽象概括
用P表示已知条件、已有的定义、定理、公理等,Q表示要证明的结论,则综合法可表示为:
综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。
分析法可表示为:
分析法的特点是:执果索因
(四)、知识应用,深化理解
例1、在△ABC中,三个内角A,B,C的对边分别为,且A,B,C成等差数列, 成等比数列,求证△ABC为等边三角形.
分析:将 A , B , C 成等差数列,转化为符号语言就是2B =A + C; A , B , C为△ABC的内角,这是一个隐含条件,明确表示出来是A + B + C =; a , b,c成等比数列,转化为符号语言就是.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.
证明:由 A, B, C成等差数列,有 2B=A + C . ①
因为A,B,C为△ABC的内角,所以 A + B + C=. ②
由①② ,得 B=. ③
由a, b,c成等比数列,有 . ④
由余弦定理及③,可得
.
再由④,得 .
即 ,
因此 .
从而 A=C.
由②③⑤,得
A=B=C=.
所以△ABC为等边三角形.
注:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来.
例2、求证。
分析:从待证不等式不易发现证明的出发点,因此我们直接从待证不等式出发,分析其成立的充分条件。
证明:因为都是正数,所以为了证明
,
只需明
,
展开得
,
只需证
,
因为成立,所以
成立。
在本例中,如果我们从“21〈25”出发,逐步倒推回去,就可以用综合法证出结论。但由于我们很难想到从“21<25”入手,所以用综合法比较困难。
事实上,在解决问题时,我们经常把综合法和分析法结合起来使用:根据条件的结构特点去转化结论,得到中间结论Q‘;根据结论的结构特点去转化条件,得到中间结论 P‘.若由P‘可以推出Q‘成立,就可以证明结论成立.下面来看一个例子.
例4 、已知,且
①
②
求证:。
分析:比较已知条件和结论,发现结论中没有出现角,因此第一步工作可以从已知条件中消去。观察已知条件的结构特点,发现其中蕴含数量关系,于是,由 ①2一2×② 得.把与结论相比较,发现角相同,但函数名称不同,于是尝试转化结论:统一函数名称,即把正切函数化为正(余)弦函数.把结论转化为,再与比较,发现只要把中的角的余弦转化为正弦,就能达到目的.
证明:因为,所以将 ① ② 代入,可得
. ③
另一方面,要证
,
即证 ,
即证
,
即证
,
即证 。
由于上式与③相同,于是问题得证。
课堂练习:
1、课本P89页 练习1、2、3
(五)、归纳小结、布置作业
综合法和分析法的特点
布置作业:.
课本P91页 1、2、3