温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
整合
【整合】人教A版高二数学选修2-2
第三章
第一节
3.1.1数系的扩充和复数的概念同步教案
人教
版高二
数学
选修
第三
3.1
扩充
复数
概念
同步
教案
§3.1.1数系的扩充和复数的概念
教学目标:
1.知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i
2. 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律
3. 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念
教学重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念;
教学难点:虚数单位i的引进及复数的概念.
教学过程设计
(一)、情景引入,激发兴趣。
【教师引入】 :数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N
随着生产和科学的发展,数的概念也得到发展
(二)、探究新知,揭示概念
为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集
有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集
因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数,叫做虚数单位.并由此产生的了复数
(三)、分析归纳,抽象概括
1.虚数单位:
(1)它的平方等于-1,即 ;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.
2. 与-1的关系: 就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-!
3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=1
4.复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*
3. 复数的代数形式: 复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式
4. 复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.
5.复数集与其它数集之间的关系:NZQRC.
6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等
这就是说,如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d
复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.
现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小
(四)、知识应用,深化理解
例1请说出复数的实部和虚部,有没有纯虚数?
答:它们都是虚数,它们的实部分别是2,-3,0,-;虚部分别是3,,-,-;-i是纯虚数.
例2 复数-2i+3.14的实部和虚部是什么?
答:实部是3.14,虚部是-2.
易错为:实部是-2,虚部是3.14!
例3(课本例1)实数m取什么数值时,复数z=m+1+(m-1)i是:
(1)实数? (2)虚数? (3)纯虚数?
[分析]因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实数、虚数和纯虚数的条件可以确定m的值.
解:(1)当m-1=0,即m=1时,复数z是实数;
(2)当m-1≠0,即m≠1时,复数z是虚数;
(3)当m+1=0,且m-1≠0时,即m=-1时,复数z 是纯虚数.
例4 已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x与y.
解:根据复数相等的定义,得方程组,所以x=,y=4
(五)、归纳小结、布置作业
教师提出问题:
(1)这节课你学到了什么?
(2)虚数单位i及它的两条性质
(3)复数的概念
布置作业:课本第106页 习题3.1 1 , 2 , 3;