3.2.2直线的两点式方程3.2.3直线的一般式方程1.会根据条件写出直线的两点式方程和截距式方程.(重点)2.了解二元一次方程与直线的对应关系,掌握直线的一般形式.(重点、难点)3.能根据所给条件求直线方程,并能在几种形式间相互转化.(难点、易混点)[基础·初探]教材整理1直线方程的两点式和截距式阅读教材P95~P96“例4”以上部分,完成下列问题.名称已知条件示意图方程使用范围两点式P1(x1,y1),P2(x2,y2),其中x1≠x2,y1≠y2=斜率存在且不为0截距式在x,y轴上的截距分别为a,b且a≠0,b≠0+=1斜率存在且不为0,不过原点一条直线不与坐标轴平行或重合,则它的方程()A.可以写成两点式或截距式B.可以写成两点式或斜截式或点斜式C.可以写成点斜式或截距式D.可以写成两点式或截距式或斜截式或点斜式【解析】由于直线不与坐标轴平行或重合,所以直线的斜率存在,且直线上任意两点的横坐标及纵坐标都不相同,所以直线能写成两点式或斜截式或点斜式由于直线在坐标轴上的截距有可能为0,所以直线不一定能写成截距式,故选B.【答案】B教材整理2线段的中点坐标公式阅读教材P96“例4”至P97“练习”以上部分,完成下列问题.若点P1,P2的坐标分别为(x1,y1),(x2,y2),设P(x,y)是线段P1P2的中点,则已知A(1,2)及AB的中点(2,3),则B点的坐标是________.【解析】设B(x,y),则∴,即B(3,4).【答案】(3,4)教材整理3直线的一般式方程阅读教材P97“练习”以下至P99“练习”以上部分,完成下列问题.1.定义:关于x,y的二元一次方程Ax+By+C=0(其中A,B不同时为0)叫做直线的一般式方程,简称一般式.2.斜率:直线Ax+By+C=0(A,B不同时为0),当B≠0时,其斜率是-,在y轴上的截距是-.当B=0时,这条直线垂直于x轴,不存在斜率.直线3x-2y=4的截距式方程是()A.-=1B.-=4C.-=1D.+=1【解析】将3x-2y=4化为+=1即得.【答案】D[小组合作型]直线的两点式方程在△ABC中,A(-3,2),B(5,-4),C(0,-2),(1)求BC所在直线的方程;(2)求BC边上的中线所在直线的方程.【精彩点拨】(1)由两点式直接求BC所在直线的方程;(2)先求出BC的中点,再由两点式求直线方程.【自主解答】(1) BC边过两点B(5,-4),C(0,-2),∴由两点式得=,即2x+5y+10=0.故BC所在直线的方程为2x+5y+10=0.(2)设BC的中点为M(x0,y0),则x0==,y0==-3.∴M,又BC边上的中线经过点A(-3,2).∴由两点式得=,即10x+11y+8=0.故BC边上的中线所在直线的...