疱工巧解牛知识•巧学一、向量的数乘1.向量的数乘一般地,我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa.它的长度与方向规定如下:(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0.实数与向量的积的定义可以看作是数与数的积的概念的推广,λa是一个向量,其长度|λa|=|λ||a|,其方向与λ的符号有关,应注意0a=0而不是实数0.2.向量的数乘的几何意义由实数与向量积的定义可以看出,它的几何意义就是将表示向量a的有向线段伸长或压缩.当|λ|>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长了|λ|倍;当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短了|λ|倍.图2-2-343.向量数乘的运算律设λ、μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb.学法一得实数与向量的积的运算律与中学代数运算中实数乘法的运算律很相似.证明这些运算律成立的关键是证明等式两边的向量的模相等,且方向相同.证明:(1)如果λ=0,μ=0,a=0中至少有一个成立,则(1)式显然成立.如果λ≠0,μ≠0,且a≠0,有|λ(μa)|=|λ||μa|=|λ||μ||a|,|(λμ)a|=|λμ||a|=|λ||μ||a|.|λ(μ∴a)|=|(λμ)a|.(2)如果λ=0,μ=0,a=0中至少有一个成立,则(2)式显然成立.如果λ≠0,μ≠0且a≠0,可分如下两种情况:当λ、μ同号时,则λa和μa同向,所以|(λ+μ)a|=|λ+μ||a|=(|λ|+|μ|)|a|,|λa+μa|=|λa|+|μa|=|λ||a|+|μ||a|=(|λ|+|μ|)|a|,即有|(λ+μ)a|=|λa+μa|.(3)当a=0,b=0中至少有一个成立,或λ=0,λ=1时,(3)式显然成立.当a≠0,b≠0且λ≠0,λ≠1时,分如下两种情况:当λ>0且λ≠1时,在平面内任取一点O,作=a,=b,=λa,=λb,如图2-2-35所示,则=a+b,=λa+λb.图2-2-35由作法知∥,有∠OAB=OA∠1B1,||=λ||,∴=λ.OABOA∴△∽△1B1.∴=λ,∠AOB=A∠1OB1.因此,O、B、B1在同一条直线上,|1OB|=|λ|,1OB与λ的方向也相同.λ(∴a+b)=λa+λb.当λ<0时,由图2-2-36可类似证明λ(a+b)=λa+λb.图2-2-36(3)∴式成立.误区警示分类讨论的思想在数学中既是一个重要的策略思想,也是一个重要的思想方法.很多数学问题不仅在涉及的知识范围上带有综合性,而且就问题本身来说,也受到多种条件的交叉制约,形成错综复杂的局面,很难从整体上着手解决,这时,就从“分割”入手,把“整体”划分...