分享
【整合】人教A版高二数学选修2-2 第三章 第一节 3.1.2复数的几何意义(同步教案).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
整合 【整合】人教A版高二数学选修2-2 第三章 第一节 3.1.2复数的几何意义同步教案 人教 版高二 数学 选修 第三 3.1 复数 几何 意义 同步 教案
§3.1.2复数的几何意义 教学目标: 1.知识与技能:理解复数与从原点出发的向量的对应关系 2. 过程与方法:了解复数的几何意义 3. 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念 教学重点:复数与从原点出发的向量的对应关系; 教学难点:虚数单位i的引进及复数的概念. 教学过程设计 (一)、情景引入,激发兴趣。 【教师引入】 :我们知道实数可以用数轴上的点来表示。 那么,类比实数的表示,可以用什么来表示复数?一个复数由什么确定? (二)、探究新知,揭示概念 1.若,,则 2. 若,,则, 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差 3. 若,,则 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标 即 =-=( x2, y2) - (x1,y1)= (x2- x1, y2- y1) 复平面、实轴、虚轴: 复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对应关系这是因为对于任何一个复数z=a+bi(a、b∈R),由复数相等的定义可知,可以由一个有序实数对(a,b)惟一确定,如z=3+2i可以由有序实数对(3,2)确定,又如z=-2+i可以由有序实数对(-2,1)来确定;又因为有序实数对(a,b)与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系. 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴 实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数 (三)、分析归纳,抽象概括 在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数 -i,虚轴上的点(0,5)表示纯虚数5i 非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i,z=-5-3i对应的点(-5,-3)在第三象限等等. 复数集C和复平面内所有的点所成的集合是一一对应关系,即 复数复平面内的点 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应. 这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法. 1.复平面内的点平面向量 2. 复数平面向量 (四)、知识应用,深化理解 例1下列命题为假命题的是: A在复平面内,对应于实数的点都在实轴上; B在复平面内,对应于纯虚数的点都在虚轴上; C在复平面内,实轴上的点所对应的复数都是实数; D在复平面内,虚轴上的点所对应的复数都是纯虚数; 例2 在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应的点(1)在虚轴上;(2)在第二象限;(3)在直线y=x上,分别求实数m的取值范围. 解 复数z=(m2-m-2)+(m2-3m+2)i的实部为m2-m-2,虚部为m2-3m+2. (1)由题意得m2-m-2=0. 解得m=2或m=-1. (2)由题意得, ∴, ∴-1<m<1. (3)由已知得m2-m-2=m2-3m+2, 故m=2. 例3 求下列复数的模: (1)z1=-5i (2)z2=-3+4i (3)z3=5-5i (4)z4=1+mi(m∈R) (5)z5=4a-3ai(a<0) (五)、归纳小结、布置作业 布置作业:课本第106页 习题3.1 4 ,5 ,6;

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开