1.4.1正弦函数、余弦函数的图象自主学习知识梳理1.正弦曲线、余弦曲线(1)定义:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做__________曲线和________曲线.(2)图象:如图所示.2.“五点法”画图步骤:(1)列表:x0π2πsinx010-10cosx10-101(2)描点:画正弦函数y=sinx,x∈[0,2π]的图象,五个关键点是________________________;画余弦函数y=cosx,x∈[0,2π]的图象,五个关键点是__________________________________.(3)用光滑曲线顺次连接这五个点,得到正、余弦曲线的简图.3.正、余弦曲线的联系依据诱导公式cosx=sin,要得到y=cosx的图象,只需把y=sinx的图象向______平移个单位长度即可.自主探究已知0≤x≤2π,结合正、余弦曲线试探究sinx与cosx的大小关系.对点讲练知识点一利用“五点法”作正、余弦函数的图象例1利用“五点法”画函数y=-sinx+1(0≤x≤2π)的简图.回顾归纳作正弦、余弦曲线要理解几何法作图,掌握五点法作图.“五点”即y=sinx或y=cosx的图象在一个最小正周期内的最高点、最低点和与x轴的交点.“五点法”是作简图的常用方法.变式训练1利用“五点法”画函数y=-1-cosx,x∈[0,2π]的简图.知识点二利用三角函数图象求定义域例2求函数f(x)=lgsinx+的定义域.回顾归纳一些三角函数的定义域可以借助函数图象直观地观察得到,同时要注意区间端点的取舍.变式训练2求函数f(x)=+lg(8x-x2)的定义域.知识点三利用三角函数的图象判断方程解的个数例3在同一坐标系中,作函数y=sinx和y=lgx的图象,根据图象判断出方程sinx=lgx的解的个数.回顾归纳三角函数的图象是研究函数的重要工具,通过图象可较简便的解决问题,这正是数形结合思想方法的应用.变式训练3求方程x2=cosx的实数解的个数.1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.课时作业一、选择题1.函数y=sinx(x∈R)图象的一条对称轴是()A.x轴B.y轴C.直线y=xD.直线x=2.函数y=-cosx的图象与余弦函数y=cosx的图象()A.只关于x轴对称B.关于原点对称C.关于原点、x轴对称D.关于原点、坐标轴对称3.如果x∈[0,2π],则函数y=+的定义域为()A.[0,π]B.C.D.4.在(0,2π)内使sinx>|cosx|的x的取值范围是()A.B.∪C.D.5.已知函数y=2sinx的图象与直线y=...