分享
3.1.2导数的概念教案.doc
下载文档

ID:3225844

大小:225.50KB

页数:4页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
3.1 导数 概念 教案
导数的概念 课前预习学案 预习目标:什么是瞬时速度,瞬时变化率。怎样求瞬时变化率。 预习内容: 1:气球的体积V与半径之间的关系是,求当空气容量V从0增加到1时,气球的平均膨胀率. 2:高台跳水运动中,运动员相对于水面的高度与起跳后的时间的关系为:. 求在这段时间里,运动员的平均速度. 3:求2中当t=1时的瞬时速度。 提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容 课内探究学案 一、学习目标 1、会用极限给瞬时速度下精确的定义;并能说出导数的概念。 2. 会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 学习重难点: 1、导数概念的理解;2、导数的求解方法和过程;3、导数符号的灵活运用 二、学习过程 合作探究 探究任务一:瞬时速度 问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知: 1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度. 探究任务二:导数 问题2: 瞬时速度是平均速度当趋近于0时的 得导数的定义:函数在处的瞬时变化率是,我们称它为函数在处的导数,记作或即 注意:(1)函数应在点的附近有定义,否则导数不存在 (2)在定义导数的极限式中,趋近于0可正、可负、但不为0,而可以为0 (3)是函数对自变量在范围内的平均变化率,它的几何意义是过曲线上点()及点)的割线斜率 (4)导数是函数在点的处瞬时变化率,它反映的函数在点处变化的快慢程度. 小结:由导数定义,高度h关于时间t的导数就是运动员的瞬时速度,气球半径关于体积V的导数就是气球的瞬时膨胀率. 典型例题 例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热. 如果在第xh时,原油的温度(单位:)为. 计算第2h和第6h时,原油温度的瞬时变化率,并说明它们的意义. 总结:函数平均变化率的符号刻画的是函数值的增减;它的绝对值反映函数值变化的快慢. 例2 已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s), (1)当t=2,Δt=0.01时,求. (2)当t=2,Δt=0.001时,求. (3)求质点M在t=2时的瞬时速度 小结: 利用导数的定义求导,步骤为: 第一步,求函数的增量; 第二步:求平均变化率; 第三步:取极限得导数. 有效训练 练1. 在例1中,计算第3h和第5h时原油温度的瞬时变化率,并说明它们的意义. 练2. 一球沿一斜面自由滚下,其运动方程是(位移单位:m,时间单位:s),求小球在时的瞬时速度 反思总结: 这节课主要学习了物体运动的瞬时速度的概念,它是用平均速度的极限来定义的,主要记住公式:瞬时速度v= 当堂检测 1. 一直线运动的物体,从时间到时,物体的位移为,那么为( ) A.从时间到时,物体的平均速度; B.在时刻时该物体的瞬时速度; C.当时间为时物体的速度; D.从时间到时物体的平均速度 2. 在 =1处的导数为( ) A.2 B.2 C. D.1 3. 在中,不可能( ) A.大于0 B.小于0 C.等于0 D.大于0或小于0 4.如果质点A按规律运动,则在时的瞬时速度为 5. 若,则等于 课后练习与提高 1. 高台跳水运动中,时运动员相对于水面的高度是:(单位: m),求运动员在时的瞬时速度,并解释此时的运动状况. 2. 一质量为3kg的物体作直线运动,设运动距离s(单位:cm)与时间(单位:s)的关系可用函数表示,并且物体的动能. 求物体开始运动后第5s时的动能. 3.1.2导数的概念教案 【教学目标】:1、会用极限给瞬时速度下精确的定义;并能说出导数的概念。 2. 会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 【教学重难点】: 教学重点:1、导数的求解方法和过程;2、导数符号的灵活运用 教学难点:导数概念的理解 【教学过程】: 情境导入: 高台跳水运动中,运动员相对于水面的高度与起跳后的时间的关系为:.通过上一节的学习,我们可以求在某时间段的平均速度。这节课我们将学到如何求在某一时刻的瞬时速度,例当t=1时的瞬时速度。 展示目标:略 检查预习:见学案 合作探究: 探究任务一:瞬时速度 问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知: 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度. 探究任务二:导数 问题2: 瞬时速度是平均速度当趋近于0时的 得导数的定义:函数在处的瞬时变化率是,我们称它为函数在处的导数,记作或即 注意:(1)函数应在点的附近有定义,否则导数不存在 (2)在定义导数的极限式中,趋近于0可正、可负、但不为0,而可以为0 (3)是函数对自变量在范围内的平均变化率,它的几何意义是过曲线上点()及点)的割线斜率 (4)导数是函数在点的处瞬时变化率,它反映的函数在点处变化的快慢程度. 小结:由导数定义,高度h关于时间t的导数就是运动员的瞬时速度,气球半径关于体积V的导数就是气球的瞬时膨胀率. 精讲精练: 例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热. 如果在第xh时,原油的温度(单位:)为. 计算第2h和第6h时,原油温度的瞬时变化率,并说明它们的意义. (1)当t=2,Δt=0.01时,求. (2)当t=2,Δt=0.001时,求. (3)求质点M在t=2时的瞬时速度 有效训练:练1. 在例1中,计算第3h和第5h时原油温度的瞬时变化率,并说明它们的意义. 练2. 一球沿一斜面自由滚下,其运动方程是(位移单位:m,时间单位:s),求小球在时的瞬时速度 反馈测评:见学案 板书设计:略 作业布置:略 4

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开