导数的概念课前预习学案预习目标:什么是瞬时速度,瞬时变化率。怎样求瞬时变化率。预习内容:1:气球的体积V与半径r之间的关系是33()4VrV,求当空气容量V从0增加到1时,气球的平均膨胀率.2:高台跳水运动中,运动员相对于水面的高度h与起跳后的时间t的关系为:2()4.96.510httt.求在12t这段时间里,运动员的平均速度.3:求2中当t=1时的瞬时速度。提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1、会用极限给瞬时速度下精确的定义;并能说出导数的概念。2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度.学习重难点:1、导数概念的理解;2、导数的求解方法和过程;3、导数符号的灵活运用二、学习过程合作探究探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是新知:1.瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2:瞬时速度是平均速度ts当t趋近于0时的得导数的定义:函数()yfx在0xx处的瞬时变化率是0000()()limlimxxfxxfxfxx,我们称它为函数()yfx在0xx处的导数,记作0()fx或0|xxy即000()()()limxfxxfxfxx注意:(1)函数应在点0x的附近有定义,否则导数不存在奎屯王新敞新疆(2)在定义导数的极限式中,x趋近于0可正、可负、但不为0,而y可以为0奎屯王新敞新疆(3)xy是函数)(xfy对自变量x在x范围内的平均变化率,它的几何意义是过曲线)(xfy上点()(,00xfx)及点)(,(00xxfxx)的割线斜率奎屯王新敞新疆(4)导数xxfxxfxfx)()(lim)(0000/是函数)(xfy在点0x的处瞬时变化率,它反映的函数)(xfy在点0x处变化的快慢程度.小结:由导数定义,高度h关于时间t的导数就是运动员的瞬时速度,气球半径关于体积V的导数就是气球的瞬时膨胀率.典型例题例1将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在1第xh时,原油的温度(单位:0c)为2()715(08)fxxxx.计算第2h和第6h时,原油温度的瞬时变化率,并说明它们的意义.总结:函数平均变化率的符号刻画的是函数值的增减;它的绝对值反映函数值变化的快慢.例2已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),(1)当t=2,Δt=0.01时,求ts.(2)当t=2,Δt=0.001时,求ts.(3)求质点M在t=2时的瞬时速...