学业分层测评(二)(建议用时:45分钟)[学业达标]一、选择题1.若集合A={(1,2),(3,4)},则集合A中元素的个数是()A.1B.2C.3D.4【解析】由列举法可知,A中含有(1,2),(3,4)两个元素.【答案】B2.把集合{x|x2-3x+2=0}用列举法表示为()A.{x=1,x=2}B.{x|x=1,x=2}C.{x2-3x+2=0}D.{1,2}【解析】解方程x2-3x+2=0得x=1或x=2,所以集合{x|x2-3x+2=0}用列举法可表示为{1,2}.【答案】D3.下列集合的表示方法正确的是()A.第二、四象限内的点集可表示为{(x,y)|xy≤0,x∈R,y∈R}B.不等式x-1<4的解集为{x<5}C.{全体整数}D.实数集可表示为R【解析】选项A中应是xy<0;选项B的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x;选项C的“{}”与“全体”意思重复.【答案】D4.方程组的解集是()A.(-5,4)B.(5,-4)C.{(-5,4)}D.{(5,-4)}【解析】解方程组得故解集为{(5,-4)},选D.【答案】D5.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4B.5C.6D.7【解析】由题意,B={2,3,4,5,6,8},共有6个元素,故选C.【答案】C二、填空题6.能被2整除的正整数的集合,用描述法可表示为________.【解析】正整数中所有的偶数均能被2整除.【答案】{x|x=2n,n∈N*}7.已知集合A={x|x2+2x+a=0},若1∈A,则A=________.【解析】把x=1代入方程x2+2x+a=0可得a=-3,解方程x2+2x-3=0可得A={-3,1}.【答案】{-3,1}8.若2∉{x|x-a<0},则实数a的取值集合是________.【解析】由题意,{x|x-a<0}={x|x<a}, 2∉{x|x-a<0},∴a≤2,∴实数a的取值集合是{a|a≤2}.【答案】{a|a≤2}三、解答题9.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1000以内被3除余2的正整数组成的集合;(3)平面直角坐标系中第二象限内的点组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.【解】(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N且x<1000}.(3)“二次函数y=x2-10图象上的所有点”用描述法表示为{(x,y)|y=x2-10}.10.若-3∈{a-3,2a-1,a2+1},求实数a的值.【解】 -3∈{a-3,2a-1,a2+1},又a2+1≥1,∴-3=a-3,或-3=2a-1,解得a=0,或a=-1,当a=0时,{a-3,...