分享
2018版高中数学(人教A版)必修1同步练习题:第1章 1.2.2 第1课时 函数的表示法.doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2018版高中数学人教A版必修1同步练习题:第1章 1.2.2 第1课时 函数的表示法 2018 高中数学 人教 必修 同步 练习题 1.2 课时 函数 表示
学业分层测评(七) (建议用时:45分钟) [学业达标] 一、选择题 1.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如图1­2­1的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))的值为(  ) x 1 2 3 f(x) 2 3 0 图1­2­1 A.3    B.2    C.1    D.0 【解析】 由函数g(x)的图象知,g(2)=1,则f(g(2))=f(1)=2. 【答案】 B 2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是(  ) 【解析】 距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C. 【答案】 C 3.函数y=-的大致图象是(  ) 【解析】 函数y=-的图象是由函数y=-的图象向左平移1个单位得到,而函数y=-的图象在第二、第四象限且是单调上升的两支图象,考查所给的四个图象只有B符合,选B. 【答案】 B 4.已知f(x)是一次函数,且f(x-1)=3x-5,则f(x)的解析式为(  ) A.f(x)=3x+2 B.f(x)=3x-2 C.f(x)=2x+3 D.f(x)=2x-3 【解析】 ∵f(x)是一次函数,∴设f(x)=kx+b(k≠0),可得f(x-1)=k(x-1)+b=kx-k+b.∵f(x-1)=3x-5,∴解之得k=3且b=-2. ∴f(x)的解析式为f(x)=3x-2,故选B. 【答案】 B 5.已知f(x)=2x+3,g(x)=4x-5,则使得f(h(x))=g(x)成立的h(x)=(  ) A.2x+3 B.2x-11 C.2x-4 D.4x-5 【解析】 由f(x)=2x+3,得f(h(x))=2h(x)+3, 则f(h(x))=g(x)可化为2h(x)+3=4x-5,解得h(x)=2x-4,故选C. 【答案】 C 二、填空题 6.已知函数f(2x+1)=3x+2,且f(a)=4,则a=________. 【解析】 由2x+1=a,得x=, ∴3×+2=4, ∴a=. 【答案】  7.某航空公司规定,乘客所携带行李的重量x(kg)与其运费y(元)由如图1­2­2的一次函数图象确定,那么乘客可免费携带行李的最大重量为________(kg). 图1­2­2 【解析】 设一次函数解析式为y=ax+b(a≠0),代入点(30,330)与点(40,630)得解得即y=30x-570,若要免费,则y≤0,∴x≤19. 【答案】 19 8.设f=,则f(x)=________. 【解析】 令t=-1,解得x=,代入得f(t)=,又因为x>0,所以t>-1,故f(x)的解析式为f(x)=(x>-1). 【答案】 (x>-1) 三、解答题 9.求下列函数的解析式: (1)已知f(x+1)=x2-3x+2,求f(x); (2)已知f(1+)=x-2-1,求f(x). 【解】 (1)设x+1=t,则x=t-1,∴f(t)=(t-1)2-3(t-1)+2=t2-5t+6,∴f(x)=x2-5x+6, (2)设1+=t(t≥1),则=t-1, ∴f(t)=(t-1)2-2(t-1)-1=t2-4t+2, ∴f(x)=x2-4x+2,(x≥1). 10.已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1, (1)求f(x)的表达式; (2)求f()的值. 【解】 (1)由f(0)=0,得c=0,∴f(x)=ax2+bx,又f(x+1)=f(x)+x+1, ∴ax2+(2a+b)x+a+b=ax2+(b+1)x+1, ∴解得 ∴f(x)=x2+x. (2)由(1)得,f()=×2+×=1+. [能力提升] 1.已知函数f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(12)=(  ) A.p+q B.2p+q C.p+2q D.p2+q 【解析】 由f(ab)=f(a)+f(b), ∴f(12)=f(4)+f(3)=2f(2)+f(3)=2p+q. 【答案】 B 2.若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为(  ) A.2 B.1 C.-1 D.无最大值 【解析】 在同一坐标系中画出函数y=2-x2,y=x的图象,如图: 根据题意,图中实线部分即为函数f(x)的图象. ∴当x=1时,f(x)max=1, 故选B. 【答案】 B 3.已知函数y=f(x)满足f(x)=2f+x,则f(x)的解析式为________. 【解析】 ∵f(x)=2f+x,① ∴将x换成,得f=2f(x)+.② 由①②消去f,得f(x)=--,即f(x)=-(x≠0). 【答案】 f(x)=-(x≠0) 4.如图1­2­3,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑) 图1­2­3 (1)试将横断面中水的面积A(m2)表示成水深h(m)的函数; (2)确定函数的定义域和值域. 【解】 (1)由已知,横断面为等腰梯形,下底为2 m,上底为(2+2h)m,高为h m,∴水的面积A= =h2+2h(m2). (2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得. 由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大, ∴0<A<6.84. 故值域为{A|0<A<6.84}.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开