3.1.3概率的基本性质1.了解事件间的包含关系和相等关系.2.理解互斥事件和对立事件的概念及关系.(重点、易错易混点)3.了解两个互斥事件的概率加法公式.(难点)[基础·初探]教材整理1事件的关系与运算阅读教材P119~P120“探究”以上的部分,完成下列问题.定义表示法图示事件的关系包含关系一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)事件互斥若A∩B为不可能事件,则称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生若A∩B=∅,则A与B互斥事件对立若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件若A∩B=∅,且A∪B=U,则A与B对立事并事若某事件发生当且仅当事件AA∪B件的运算件或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)(或A+B)交事件若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)同时抛掷两枚硬币,向上面都是正面为事件M,向上面至少有一枚是正面为事件N,则有()A.M⊆NB.M⊇NC.M=ND.M<N【解析】事件N包含两种结果:向上面都是正面或向上面是一正一反.则当M发生时,事件N一定发生,则有M⊆N.故选A.【答案】A教材整理2概率的性质阅读教材P120“探究”以下的部分,完成下列问题.1.概率的取值范围为[0,1].2.必然事件的概率为1,不可能事件的概率为0.3.概率加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).特例:若A与B为对立事件,则P(A)=1-P(B),P(A∪B)=1,P(A∩B)=0.4.概率的加法公式的含义(1)使用条件:A,B互斥.(2)推广:若事件A1,A2,…,An彼此互斥,则P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).(3)在求某些复杂的事件的概率时,可将其分解为一些概率较易求的彼此互斥的事件,化整为零,化难为易.1.判断(正确的打“√”,错误的打“×”)(1)互斥事件一定对立.()(2)对立事件一定互斥.()(3)互斥事件不一定对立.()(4)事件A与B的和事件的概率一定大于事件A的概率.()(5)事件A与B互斥,则有P(A)=1-P(B).()(6)若P(A)+P(B)=1,则事件A与事件B一定是对立事件.()【答案】(1)×(2)√(3)√(4)×(5)×(6)×2.P(A)=0.1,P(B)=0.2,则P(A∪B)等于()A.0.3B.0.2C.0.1D.不确定【解析】由于不能确定A与B互斥,则P(A∪B)的值不能确定.【答案】D3.一商店有奖促销活动中有一等奖与二等奖两个奖项,其中中一等奖的...