2.1空间点、直线、平面之间的位置关系2.1.1平面1.了解平面的概念,掌握平面的画法及表示方法.(难点)2.能用符号语言描述空间点、直线、平面之间的位置关系.(重点)3.能用图形、文字、符号三种语言描述三个公理,理解三个公理的地位与作用.(难点、易错点)[基础·初探]教材整理1平面阅读教材P40~P41“思考”以上的内容,完成下列问题.1.平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.2.平面的画法(1)水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍.如图211①.(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图211②.图①图②图2113.平面的表示法图211①的平面可表示为平面α、平面ABCD、平面AC或平面BD.下列说法:①书桌面是平面;②8个平面重叠后,要比6个平面重叠后厚;③有一个平面的长是100m,宽是90m;④平面是绝对平滑,无厚度,无限延展的抽象概念.其中正确的个数为()A.0B.1C.2D.3【解析】①错误,因为平面具有延展性;②错误,平面无厚度;③错误,因为平面无厚度、大小之分;④正确,符合平面的概念.【答案】B教材整理2平面的基本性质阅读教材P41“思考”以下至P43“例1”以上的内容,完成下列问题.公理内容图形符号公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α公理2过不在一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒存在惟一的α使A,B,C∈α公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α,P∈β⇒α∩β=l,且P∈l判断(正确的打“√”,错误的打“×”)(1)三点可以确定一个平面.()(2)一条直线和一个点可以确定一个平面.()(3)四边形是平面图形.()(4)两条相交直线可以确定一个平面.()【解析】(1)错误.不共线的三点可以确定一个平面.(2)错误.一条直线和直线外一个点可以确定一个平面.(3)错误.四边形不一定是平面图形.(4)正确.两条相交直线可以确定一个平面.【答案】(1)×(2)×(3)×(4)√[小组合作型]文字语言、图形语言、符号语言的相互转化根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)P∈l,P∉α,Q∈l,Q∈α.【精彩点拨】解答本题要正确理解立体几何中表示点...