1.1集合1.1.1集合的含义与表示第1课时集合的含义1.通过实例了解集合的含义.(难点)2.掌握集合中元素的三个特性.(重点)3.体会元素与集合的“属于”关系,记住常用数集的表示符号并会应用.(重点、易混点)[基础·初探]教材整理1集合的含义阅读教材P2~P3“思考”以上部分,完成下列问题.1.元素与集合的概念(1)元素:一般地,我们把研究对象统称为元素.(2)集合:把一些元素组成的总体叫做集合(简称集).2.集合中元素的特性集合中元素具有三个特性:确定性、互异性、无序性.3.集合的相等只要构成两个集合的元素是一样的,我们就称两个集合是相等的.判断(正确的打“√”,错误的打“×”)(1)山东新坐标书业有限公司的优秀员工可以组成集合.()(2)分别由元素0,1,2和2,0,1组成的两个集合是相等的.()(3)由-1,1,1组成的集合中有3个元素.()【解析】(1)×.因为“优秀”没有明确的标准,其不满足集合中元素的确定性.(2)√.根据集合相等的定义知,两个集合相等.(3)×.因为集合中的元素要满足互异性,所以由-1,1,1组成的集合有2个元素-1,1.【答案】(1)×(2)√(3)×教材整理2元素与集合的关系阅读教材P3“思考”以下至“列举法”以上的内容,完成下列问题.1.元素与集合的表示(1)元素的表示:通常用小写拉丁字母a,b,c,…表示集合中的元素.(2)集合的表示:通常用大写拉丁字母A,B,C,…表示集合.2.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.3.常用数集及符号表示数集非负整数集(或自然数集)正整数集整数集有理数集实数集符号NN*或N+ZQR用“∈”或“∉”填空:____N;-3____Z;____Q;0____N*;____R.【解析】因为不是自然数,所以∉N;-3是整数,所以-3∈Z;因为不是有理数,所以∉Q;0不是非零自然数,所以0∉N*;因为是实数,所以∈R.【答案】∉∈∉∉∈[小组合作型]集合的含义下列所给的对象能构成集合的是________.【导学号:97030000】①所有的正三角形;②比较接近1的数的全体;③某校高一年级所有16岁以下的学生;④平面直角坐标系内到原点距离等于1的点的集合;⑤所有参加2018年俄罗斯世界杯的年轻足球运动员;⑥的近似值的全体.【精彩点拨】判断一组对象能否组成集合的关键是看该组对象是否具有确定性.【自主解答】①能构成集合,其中的元素满足三条边相等;②不能构成集合,因为“比较接近1”的标准不明确,所以元素...