1.2.2函数的表示法第1课时函数的表示法1.掌握函数的三种表示方法:解析法、图象法、列表法.(重点)2.会根据不同的需要选择恰当的方法表示函数.(难点)[基础·初探]教材整理函数的表示方法阅读教材P19~P21例5以上部分,完成下列问题.1.函数的三种表示法解析法:用数学表达式表示两个变量之间的对应关系.图象法:用图象表示两个变量之间的对应关系.列表法:列出表格来表示两个变量之间的对应关系.2.函数三种表示法的优缺点表示法优点缺点解析法简明、全面概括了变量间的关系;利用解析式可以求任一点处的函数值不够形象、直观而且并非所有的函数都有解析式列表法不需计算可以直接看出自变量对应的函数值仅能表示自变量取较少的有限的对应关系图象法能形象直观地表示函数的变化情况只能近似求出自变量的值所对应的函数值,而且有时误差较大判断(正确的打“√”,错误的打“×”)(1)任何一个函数都可以用列表法表示.()(2)任何一个函数都可以用解析法表示.()(3)函数的图象一定是其定义区间上的一条连续不断的曲线.()【解析】(1)×.如果函数的定义域是连续的数集,则该函数就不能用列表法表示.(2)×.有些函数无解析式,如某地一天24小时内的气温变化情况.(3)×.反例:f(x)=的图象就不是连续的曲线.【答案】(1)×(2)×(3)×[小组合作型]函数的表示法(1)函数f(x)=x+的图象是()(2)某商场新进了10台彩电,每台售价3000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.【精彩点拨】(1)对x进行讨论,将函数f(x)=x+转化为所熟知的基本初等函数即可作图.(2)函数的定义域是{1,2,3,…,10},值域是{3000,6000,9000,…,30000},可直接列表、画图表示,分析题意得到表示y与x关系的解析式,注意定义域.【自主解答】(1)当x>0时,f(x)=x+1,故图象为直线f(x)=x+1(x>0的部分);当x<0时,f(x)=x-1,故图象为直线f(x)=x-1(x<0的部分);当x=0时,f(x)无意义即无图象.结合图象可知C正确.【答案】C(2)【解】①列表法如下:x(台)12345y(元)3000600090001200015000x(台)678910y(元)1800021000240002700030000②图象法:如图所示.③解析法:y=3000x,x∈{1,2,3,…,10}.列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有代表性,应能反映定义域...