分享
2.4.1平面向量数量积的物理背景及其含义.doc
下载文档

ID:3224896

大小:331KB

页数:7页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2.4.1 平面向量数量积的物理背景及其含义 2.4 平面 向量 数量 物理 背景 及其 含义
2.4 平面向量的数量积 2.4.1 平面向量数量积的物理背景及其含义 一、教学分析 前面已经知道,向量的线性运算有非常明确的几何意义,因此利用向量运算可以讨论一些几何元素的位置关系.既然向量可以进行加减运算,一个自然的想法是两个向量能否做乘法运算呢?如果能,运算结果应该是什么呢?另外,距离和角是刻画几何元素(点、线、面)之间度量关系的基本量.我们需要一个向量运算来反映向量的长度和两个向量间夹角的关系.众所周知,向量概念的引入与物理学的研究密切相关,物理学家很早就知道,如果一个物体在力F的作用下产生位移s(如图1),那么力F所做的功 图1 W=|F||s|cosθ 功W是一个数量,其中既涉及“长度”,也涉及“角”,而且只与向量F,s有关.熟悉的数的运算启发我们把上式解释为两个向量的运算,从而引进向量的数量积的定义 a·b=|a||b|cosθ. 这是一个好定义,它不仅满足人们熟悉的运算律(如交换律、分配律等),而且还可以用它来更加简洁地表述几何中的许多结果. 向量的数量积是一种新的向量运算,与向量的加法、减法、数乘运算一样,它也有明显的物理意义、几何意义.但与向量的线性运算不同的是,它的运算结果不是向量而是数量. 二、教学目标 1、知识与技能: 掌握平面向量的数量积及其几何意义;掌握平面向量数量积的重要性质及运算律;了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;掌握向量垂直的条件。 2、过程与方法: 通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义;体会平面向量的数量积与向量投影的关系。 3、情感态度与价值观: 通过与物理中“功”的类比抽象出向量的数量积,培养学生的抽象概括能力。 三、重点难点 教学重点:平面向量数量积的定义. 教学难点:平面向量数量积的定义及其运算律的理解和平面向量数量积的应用. 四、教学设想 (一)导入新课 思路1.我们前面知道向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰,并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究. 在物理课中,我们学过功的概念,即如果一个物体在力F的作用下产生位移s,那么力F所做的功W可由下式计算: W=|F||s|cosθ 其中θ是F与s的夹角.我们知道力和位移都是向量,而功是一个标量(数量). 故从力所做的功出发,我们就顺其自然地引入向量数量积的概念.[来源:Zxxk.Com] 思路2.前面我们已学过,任意的两个向量都可以进行加减运算,并且两个向量的和与差仍是一个向量.我们结合任意的两个实数之间可以进行加减乘除(除数不为零)运算,就自然地会想到,任意的两个向量是否可以进行乘法运算呢?如果能,其运算结果是什么呢? (二)推进新课、新知探究、提出问题 ①a·b的运算结果是向量还是数量?它的名称是什么? ②由所学知识可以知道,任何一种运算都有其相应的运算律,数量积是一种向量的乘法运算,它是否满足实数的乘法运算律? ③我们知道,对任意a,b∈R,恒有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.对任意向量a、b,是否也有下面类似的结论? (1)(a+b)2=a2+2a·b+b2; (2)(a+b)·(a-b)=a2-b2. 活动:已知两个非零向量a与b,我们把数量|a||b|cosθ叫做a与b的数量积(或内积),记作a·b,即 a·b=|a||b|cosθ(0≤θ≤π). 其中θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.如图2为两向量数量积的关系,并且可以知道向量夹角的范围是0°≤θ≤180°. 图2 在教师与学生一起探究的活动中,应特别点拨引导学生注意: (1)两个非零向量的数量积是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积; (2)零向量与任一向量的数量积为0,即a·0=0; (3)符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替; (4)当0≤θ<时cosθ>0,从而a·b>0;当<θ≤π时,cosθ<0,从而a·b<0.与学生共同探究并证明数量积的运算律. 已知a,b,c和实数λ,则向量的数量积满足下列运算律: ①a·b=b·a(交换律); ②(λa)·b=λ(a·b)=a·(λb)(数乘结合律); ③(a+b)·c=a·c+b·c(分配律). 特别是:(1)当a≠0时,由a·b=0不能推出b一定是零向量.这是因为任一与a垂直的非零向量b,都有a·b=0. 图3 (2)已知实数a、b、c(b≠0),则ab=bca=c.但对向量的数量积,该推理不正确,即a·b=b·c不能推出a=c.由图3很容易看出,虽然a·b=b·c,但a≠c. (3)对于实数a、b、c有(a·b)c=a(b·c);但对于向量a、b、c,(a·b)c=a(b·c)不成立.这是因为(a·b)c表示一个与c共线的向量,而a(b·c)表示一个与a共线的向量,而c与a不一定共线,所以(a·b)c=a(b·c)不成立. 讨论结果:①是数量,叫数量积. ②数量积满足a·b=b·a(交换律); (λa)·b=λ(a·b)=a·(λb)(数乘结合律); (a+b)·c=a·c+b·c(分配律). ③(1)(a+b)2=(a+b)·(a+b) =a·b+a·b+b·a+b·b=a2+2a·b+b2; (2)(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2. 提出问题 ①如何理解向量的投影与数量积?它们与向量之间有什么关系? ②能用“投影”来解释数量积的几何意义吗? 活动:教师引导学生来总结投影的概念,可以结合“探究”,让学生用平面向量的数量积的定义,从数与形两个角度进行探索研究.教师给出图形并作结论性的总结,提出注意点“投影”的概念,如图4. [来源:学§科§网Z§X§X§K] 图4  定义:|b|cosθ叫做向量b在a方向上的投影.并引导学生思考: 1°投影也是一个数量,不是向量; 2°当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0°时投影为|b|;当θ=180°时投影为-|b|. 教师结合学生对“投影”的理解,让学生总结出向量的数量积的几何意义: 数量积a·b等于a的长度与b在a方向上投影|b|cosθ的乘积. 让学生思考:这个投影值可正、可负,也可为零,所以我们说向量的数量积的结果是一个实数.教师和学生共同总结两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量. 1°e·a=a·e=|a|cosθ. 2°a⊥ba·b=0. 3°当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|. 特别地a·a=|a|2或|a|=. 4°cosθ=. 5°|a·b|≤|a||b|. 上述性质要求学生结合数量积的定义自己尝试推证,教师给予必要的补充和提示,在推导过程中理解并记忆这些性质. 讨论结果:①略(见活动). ②向量的数量积的几何意义为数量积a·b等于a的长度与b在a方向上投影|b|cosθ的乘积. (三)应用示例 思路1 例1 已知平面上三点A、B、C满足||=2,||=1,||=,求·+·+的值. 活动:教师引导学生利用向量的数量积并结合两向量的夹角来求解,先分析题设然后找到所需条件.因为已知、、的长度,要求得两两之间的数量积,必须先求出两两之间的夹角.结合勾股定理可以注意到△A是直角三角形,然后可利用数形结合来求解结果. 解:由已知,||2+||2=||2,所以△ABC是直角三角形.而且∠ACB=90°, 从而sin∠ABC=,sin∠BAC=. ∴∠ABC=60°,∠BAC=30°. ∴与的夹角为120°,与的夹角为90°,与的夹角为150°. 故·+·+· =2×1×cos120°+1×cos90°+×2cos150° =-4. 点评:确定两个向量的夹角,应先平移向量,使它们的起点相同,再考察其角的大小,而不是简单地看成两条线段的夹角,如例题中与的夹角是120°,而不是60°. 变式训练 已知|a|=6,|b|=4,a与b的夹角为60°,求(a+2b)·(a-3b). 解:(a+2b)·(a-3b)=a·a-a·b-6b·b =|a|2-a·b-6|b|2 =|a|2-|a||b|cosθ-6|b|2 =62-6×4×cos60°-6×42 =-72. 例2 已知|a|=3,|b|=4,且a与b不共线,当k为何值时,向量a+kb与a-kb互相垂直? 解:a+kb与a-kb互相垂直的条件是(a+kb)·(a-kb)=0, 即a2-k2b2=0. ∵a2=32=9,b2=42=16, ∴9-16k2=0. ∴k=±. 也就是说,当k=±时,a+kb与a-kb互相垂直. 点评:本题主要考查向量的数量积性质中垂直的充要条件. 变式训练 已知向量a、b满足:a2=9,a·b=-12,求|b|的取值范围. 解:∵|a|2=a2=9, ∴|a|=3. 又∵a·b=-12, ∴|a·b|=12. ∵|a·b|≤|a||b|, ∴12≤3|b|,|b|≥4. 故|b|的取值范围是[4,+∞). 思路2 例1 已知在四边形ABCD中,=a,=b,=c,=d,且a·b=c·d=b·c=d·a,试问四边形ABCD的形状如何? 解:∵+++=0, 即a+b+c+d=0, ∴a+b=-(c+d). 由上可得(a+b)2=(c+d)2, 即a2+2a·b+b2=c2+2c·d+d2. 又∵a·b=c·d,故a2+b2=c2+d2.[来源:Zxxk.Com] 同理可得a2+d2=b2+c2. 由上两式可得a2=c2,且b2=d2, 即|a|=|c|,且|b|=|d|,也即AB=CD,且BC=DA, ∴ABCD是平行四边形. 故=,即a=-c. 又a·b=b·c=-a·b, 即a·b=0,∴a⊥b,即⊥. 综上所述,ABCD是矩形. 点评:本题考查的是向量数量积的性质应用,利用向量的数量积解决有关垂直问题,然后结合四边形的特点进而判断四边形的形状. [来源:Zxxk.Com] 例2 已知a,b是两个非零向量,且|a|-|b|=|a+b|,求向量b与a-b的夹角. 活动:教师引导学生利用向量减法的平行四边形法则,画出以a,b为邻边的ABCD,若=a,=b,则=a+b,=a-b.由|a|-|b|=|a+b|,可知∠ABC=60°,b与所成角是150°.我们还可以利用数量积的运算,得出向量b与a-b的夹角,为了巩固数量积的有关知识,我们采用另外一种角度来思考问题,教师给予必要的点拨和指导,即由cos〈b,a-b〉=作为切入点,进行求解. 解:∵|b|=|a+b|,|b|=|a|,∴b2=(a+b)2. ∴|b|2=|a|2+2a·b+|b|2. ∴a·b=-|b|2. 而b·(a-b)=b·a-b2=|b|2-|b|2=|b|2, ① 由(a-b)2=a2-2a·b+b2=|b|2-2×()|b|2+|b|2=3|b|2,[来源:Zxxk.Com] 而|a-b|2=(a-b)2=3|b|2, ∴|a-b|=3|b|. ② ∵cos〈b,a-b〉= 代入①②,得cos〈b,a-b〉=-. 又∵〈b,a-b〉∈[0,π], ∴〈b,a-b〉=. 点评:本题考查的是利用平面向量的数量积解决有关夹角问题,解完后教师及时引导学生对本解法进行反思、总结、体会. 变式训练 设向量c=ma+nb(m,n∈R),已知|a|=2,|c|=4,a⊥c,b·c=-4,且b与c的夹角为120°,求m,n的值. 解:∵a⊥c,∴a·c=0. 又c=ma+nb,∴c·c=(ma+nb)·c, 即|c|2=ma·c+nb·c.∴|c|2=nb·c. 由已知|c|2=16,b·c=-4, ∴16=-4n.∴n=-4. 从而c=ma-4b. ∵b·c=|b||c|cos120°=-4, ∴|b|·4·()=-4.∴|b|=2. 由c=ma-4b,得a·c=ma2-4a·b, ∴8m-4a·b=0,即a·b=2m. ① 再由c=ma-4b,得b·c=ma·b-4b2. ∴ma·b-16=-4,即ma·b=12. ② 联立①②得2m2=12,即m2=6. ∴m=±.故m=±,n=-4. (四)课堂小结 1.先由学生回顾本节学习的数学知识,数量积的定义、几何意义,数量积的重要性质,数量积的运算律. 2.教师与学生总结本节学习的数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法的同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解. (五)作业

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开