2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示一、教学分析1.前面学习了平面向量的坐标表示,实际是平面向量的代数表示.在引入了平面向量的坐标表示后可使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.2.本小节主要是运用向量线性运算的交换律、结合律、分配律,推导两个向量的和的坐标、差的坐标以及数乘的坐标运算.推导的关键是灵活运用向量线性运算的交换律、结合律和分配律.3.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,一个自然的想法是向量的某些关系,特别是向量的平行、垂直,是否也能通过坐标来研究呢?前面已经找出两个向量共线的条件(如果存在实数λ,使得a=λb,那么a与b共线),本节则进一步地把向量共线的条件转化为坐标表示.这种转化是比较容易的,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.要注意的是,向量的共线与向量的平行是一致的.二、教学目标1、知识与技能:掌握平面向量的坐标运算;会根据向量的坐标,判断向量是否共线。2、过程与方法:通过对共线向量坐标关系的探究,提高分析问题、解决问题的能力。3情感态度与价值观:学会用坐标进行向量的相关运算,理解数学内容之间的内在联系。三、教学重点与难点教学重点:平面向量的坐标运算。教学难点:向量的坐标表示的理解及运算的准确.四、教学设想(一)导入新课思路1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x、y的二元一次方程Ax+By+C=0(A、B不同时为零)何时所体现的两条直线平行?向量的共线用代数运算如何体现?思路2.对于平面内的任意向量a,过定点O作向量=a,则点A的位置被向量a的大小和方向所唯一确定.如果以定点O为原点建立平面直角坐标系,那么点A的位置可通过其坐标来反映,从而向量a也可以用坐标来表示,这样我就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢?(二)推进新课、新知探究、提出问题①我们研究了平面向量的坐标表示,现在已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐...