温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2016-2017学年人教A版高中数学选修2-2课时跟踪检测十九
复数的几何意义
2016
2017
学年
高中数学
选修
课时
跟踪
检测
十九
复数
几何
意义
课时跟踪检测(十九) 复数的几何意义
层级一 学业水平达标
1.与x轴同方向的单位向量e1与y轴同方向的单位向量e2,它们对应的复数分别是( )
A.e1对应实数1,e2对应虚数i
B.e1对应虚数i,e2对应虚数i
C.e1对应实数1,e2对应虚数-i
D.e1对应实数1或-1,e2对应虚数i或-i
解析:选A e1=(1,0),e2=(0,1).
2.当<m<1时,复数z=(3m-2)+(m-1)i在复平面上对应的点位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析:选D ∵<m<1,∴3m-2>0,m-1<0,∴点(3m-2,m-1)在第四象限.
3.已知0<a<2,复数z=a+i(i是虚数单位),则|z|的取值范围是( )
A.(1,) B.(1,)
C.(1,3) D.(1,5)
解析:选B |z|=,∵0<a<2,∴1<a2+1<5,∴|z|∈(1,).
5.复数z=1+cos α+isin α(π<α<2π)的模为( )
A.2cos B.-2cos
C.2sin D.-2sin
解析:选B |z|====2|cos|.∵π<α<2π,∴<<π,cos<0,于是|z|=-2cos.
6.复数3-5i,1-i和-2+ai在复平面上对应的点在同一条直线上,则实数a的值为________.
解析:由点(3,-5),(1,-1),(-2,a)共线可知a=5.
答案:5
7.过原点和-i对应点的直线的倾斜角是________.
解析:∵-i在复平面上的对应点是(,-1),
∴tan α==-(0≤α<π),∴α=.
答案:
9.设z为纯虚数,且|z-1|=|-1+i|,求复数z.
解:∵z为纯虚数,∴设z=ai(a∈R且a≠0),
又|-1+i|=,由|z-1|=|-1+i|,
得 =,解得a=±1,∴z=±i.
10.已知复数z=m(m-1)+(m2+2m-3)i(m∈R).
(1)若z是实数,求m的值;
(2)若z是纯虚数,求m的值;
(3)若在复平面内,z所对应的点在第四象限,求m的取值范围.
解:(1)∵z为实数,∴m2+2m-3=0,
解得m=-3或m=1.
(2)∵z为纯虚数,
∴ 解得m=0.
(3)∵z所对应的点在第四象限,
∴ 解得-3<m<0.
故m的取值范围为(-3,0).
层级二 应试能力达标
1.已知复数z1=2-ai(a∈R)对应的点在直线x-3y+4=0上,则复数z2=a+2i对应的点在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析:选B 复数z1=2-ai对应的点为(2,-a),它在直线x-3y+4=0上,故2+3a+4=0,解得a=-2,于是复数z2=-2+2i,它对应点的点在第二象限,故选B.
2.复数z=(a2-2a)+(a2-a-2)i对应的点在虚轴上,则( )
A.a≠2或a≠1 B.a≠2且a≠1
C.a=0 D.a=2或a=0
解析:选D ∵z在复平面内对应的点在虚轴上,
∴a2-2a=0,解得a=2或a=0.
3.若x,y∈R,i为虚数单位,且x+y+(x-y)i=3-i,则复数x+yi在复平面内所对应的点在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析:选A ∵x+y+(x-y)i=3-i,∴
解得∴复数1+2i所对应的点在第一象限.
4.在复平面内,复数z1,z2对应点分别为A,B.已知A(1,2),|AB|=2,|z2|=,则z2=( )
A.4+5i B.5+4i
C.3+4i D.5+4i或+i
解析:选D 设z2=x+yi(x,y∈R),由条件得, ∴ 或
故选D.
5.若复数z=(m2-9)+(m2+2m-3)i是纯虚数,其中m∈R,则|z|=________.
解析:由条件知∴m=3,∴z=12i,∴|z|=12.
答案:12
6.已知复数z=x-2+yi的模是2,则点(x,y)的轨迹方程是________.
解析:由模的计算公式得 =2,
∴(x-2)2+y2=8.
答案:(x-2)2+y2=8
7.已知复数z0=a+bi(a,b∈R),z=(a+3)+(b-2)i,若|z0|=2,求复数z对应点的轨迹.
解:设z=x+yi(x,y∈R),则复数z的对应点为P(x,y),由题意知
∴ ①
∵z0=a+bi,|z0|=2,∴a2+b2=4.
将①代入得(x-3)2+(y+2)2=4.
∴点P的轨迹是以(3,-2)为圆心,2为半径的圆.
8.已知复数z1=+i,z2=-+i.
(1)求|z1|及|z2|并比较大小;
(2)设z∈C,满足条件|z2|≤|z|≤|z1|的点Z的轨迹是什么图形?
解:(1)|z1|= =2,
|z2|= =1,∴|z1|>|z2|.
(2)由|z2|≤|z|≤|z1|及(1)知1≤|z|≤2.
因为|z|的几何意义就是复数z对应的点到原点的距离,所以|z|≥1表示|z|=1所表示的圆外部所有点组成的集合,|z|≤2表示|z|=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.