分享
2016-2017学年人教A版高中数学必修2检测:第2章 点、直线、平面之间的位置关系 课后提升作业 10 2.2.1&2.2.2 Word版含解析.doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2016-2017学年人教A版高中数学必修2检测:第2章 点、直线、平面之间的位置关系 课后提升作业 10 2.2.1&2.2.
课后提升作业 十 直线与平面平行的判定 平面与平面平行的判定 (45分钟 70分) 一、选择题(每小题5分,共40分) 1.(2016·济宁高一检测)已知l∥α,m∥α,l∩m=P且l与m确定的平面为β,则α与β的位置关系是 (  ) A.相交          B.平行 C.相交或平行 D.不确定 【解析】选B.因为l∩m=P,所以过l与m确定一个平面β,又因为l∥α,m∥α,l∩m=P,所以β∥α. 2.已知a,b是两条相交直线,a∥α,则b与α的位置关系是 (  ) A.b∥α B.b与α相交 C.b⊂α D.b∥α或b与α相交 【解析】选D.由题意画出图形,当a,b所在平面与平面α平行时,b与平面α平行,当a,b所在平面与平面α相交时,b与平面α相交. 3.(2016·福州高一检测)平面α与△ABC的两边AB,AC分别交于点D,E,且AD︰DB=AE︰EC,如图,则BC与α的位置关系是  (  ) A.平行 B.相交 C.平行或相交 D.异面 【解析】选A.因为AD︰DB=AE︰EC,所以DE∥BC,又DE⊂α,BC⊄α,所以BC∥α. 4.有以下三种说法,其中正确的是 (  ) ①若直线a与平面α相交,则α内不存在与a平行的直线; ②若直线b∥平面α,直线a与直线b垂直,则直线a不可能与α平行; ③直线a,b满足a∥α,a∥b,且b⊂α,则a平行于经过b的任何平面. A.①②    B.①③    C.②③    D.① 【解析】选D.①正确,若在α内存在一条直线b,使a∥b,则a∥α与“a与平面α相交”矛盾,故①正确;②错误,反例如图(1)所示;③错误,反例如图(2)所示,a,b可能在同一平面内. 5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则 (  ) A.BD∥平面EFG,且四边形EFGH是平行四边形 B.EF∥平面BCD,且四边形EFGH是梯形 C.HG∥平面ABD,且四边形EFGH是平行四边形 D.EH∥平面ADC,且四边形EFGH是梯形 【解析】选B.如图,由题意得, EF∥BD, 且EF=BD. HG∥BD,且HG=BD. 所以EF∥HG,且EF≠HG. 所以四边形EFGH是梯形. 所以EF∥平面BCD,而EH与平面ADC不平行.故选B. 6.正方体EFGH-E1F1G1H1中,下列四对截面中,彼此平行的一对截面是 (  ) A.平面E1FG1与平面EGH1 B.平面FHG1与平面F1H1G C.平面F1H1H与平面FHE1 D.平面E1HG1与平面EH1G 【解析】选A.在平面E1FG1与平面EGH1中,因E1G1∥EG,FG1∥EH1,且E1G1∩FG1=G1,EG∩EH1=E,故平面E1FG1∥平面EGH1. 7.已知m,n是两条直线,α,β是两个平面,有以下说法: ①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β; ②若m∥α,m∥β,则α∥β; ③若m∥α,n∥β,m∥n,则α∥β. 其中正确说法的个数是 (  ) A.0 B.1 C.2 D.3 【解析】选B.设m∩n=P,则直线m,n确定一个平面, 设为γ,由面面平行的判定定理知,α∥γ,β∥γ, 因此,α∥β,即①正确;如图,在长方体ABCD-A1B1C1D1中,直线EF平行于平面ADD1A1和平面A1B1C1D1, 即满足②的条件, 但平面A1B1C1D1与平面ADD1A1不平行, 因此②不正确;图中,EF∥平面ADD1A1,BC∥平面A1B1C1D1,EF∥BC,但平面ADD1A1与平面A1B1C1D1不平行,所以③也不正确. 8. (2016·青岛高一检测)在正方体ABCD-A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,P在对角线BD1上,且BP=BD1,给出下面四个命题: (1)MN∥平面APC;(2)C1Q∥平面APC;(3)A,P,M三点共线;(4)平面MNQ∥平面APC.正确的序号为 (  ) A.(1)(2) B.(1)(4) C.(2)(3) D.(3)(4) 【解析】选C.(1)MN∥AC,连接AM,CN,易得AM,CN交于点P,即MN⊂平面PAC,所以MN∥平面APC是错误的;(2)平面APC延展,可知M,N在平面APC上,AN∥C1Q,所以C1Q∥平面APC,是正确的;(3)由BP=BD1,以及相似,可得A,P,M三点共线,是正确的; (4)直线AP延长到M,则M在平面MNQ内,又在平面APC内,所以平面MNQ∥平面APC,是错误的. 二、填空题(每小题5分,共10分) 9.(2016·济南高一检测)三棱锥S-ABC中,G为△ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________. 【解析】连接AG并延长交BC于点M,连接SM,则AG=2GM, 又AE=2ES,所以EG∥SM, 又EG⊄平面SBC, 所以EG∥平面SBC. 答案:平行 10.(2016·太原高一检测)下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是________.(将你认为正确的都填上) 【解析】在④中NP平行所在正方体的那个侧面的对角线,从而平行AB,所以AB∥平面MNP; 在①中设过点B且垂直于上底面的棱与上底面交点为C,则由NP∥CB,MN∥AC,可知平面MNP∥平面ABC,即AB∥平面MNP. 答案:①④ 【补偿训练】(2016·菏泽高一检测)如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点,则下列命题:①E,C,D1,F四点共面; ②CE,D1F,DA三线共点;③EF和BD1所成的角为90°;④A1B∥平面CD1E.其中正确的是________(填序号). 【解析】由题意EF∥CD1,故E,C,D1,F四点共面;由EF􀱀CD1,故D1F与CE相交,记交点为P,则P∈平面ADD1A1,P∈平面ABCD,所以点P在平面ADD1A1与平面ABCD的交线AD上,故CE,D1F,DA三线共点;∠A1BD1即为EF与BD1所成角,显然∠A1BD1≠90°;因为A1B∥EF,EF⊂平面CD1E,A1B⊄平面CD1E,所以A1B∥平面CD1E. 答案:①②④ 三、解答题(每小题10分,共20分) 11.(2015·福建高考改编)如图,在几何体ABCDE中,四边形ABCD是矩形,G,F分别是BE,DC的中点. 求证:GF∥平面ADE. 【证明】取AE的中点H,连接HG,HD, 又G是BE的中点, 所以GH∥AB且GH=AB, 又F是CD的中点, 所以DF=CD,由四边形ABCD是矩形, 得ABCD, 所以GHDF,从而四边形HGFD是平行四边形, 所以GF∥HD. 又DH⊂平面ADE,GF⊄平面ADE, 所以GF∥平面ADE. 12.(2015·四川高考改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M,GH的中点为N. (1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由). (2)判断平面BEG与平面ACH的位置关系,并证明你的结论. 【解析】(1)点F,G,H的位置如图所示. (2)平面BEG∥平面ACH.证明如下: 因为ABCD-EFGH为正方体, 所以BC∥FG,BC=FG, 又FG∥EH,FG=EH,所以BC∥EH,BC=EH 于是BCHE为平行四边形.所以BE∥CH, 又CH⊂平面ACH,BE⊄平面ACH, 所以BE∥平面ACH.同理BG∥平面ACH, 又BE∩BG=B,所以平面BEG∥平面ACH. 【能力挑战题】 已知直三棱柱ABC-A1B1C1,点N在AC上且CN=3AN,点M,P,Q分别是AA1,A1B1,BC的中点.求证:直线PQ∥平面BMN. 【证明】如图,取AB中点G,连接PG,QG分别交BM,BN于点E,F,则E,F分别为BM,BN的中点.而GE∥AM,GE=AM,GF∥AN,GF=AN,且CN=3AN,所以=,==,所以==,所以EF∥PQ,又EF⊂平面BMN,PQ⊄平面BMN,所以PQ∥平面BMN.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开