温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
23
旋转
单元
检测
优秀领先 飞翔梦想 成人成才
第23章 旋转 单元测试题
一、选择题:(每题3,共30分)
1.在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,其中是旋转的有( )
A.①② B.②③ C. ①④ D. ③④
2、我们知道,国旗上的五角星是旋转对称图形,它需要旋转多少度后才能与自身重合?( )
A、36° B、60° C、45° D、72°
3、如果两个图形可通过旋转而相互得到,则下列说法中正确的有( ).
①对应点连线的中垂线必经过旋转中心.
②这两个图形大小、形状不变.
③对应线段一定相等且平行.
④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.
A.1个 B.2个 C.3个 D.4个
4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A. B. C. D.
5.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为( )
A.(﹣2,1) B.(2,﹣1) C.(2,1) D. (﹣2,﹣1)
6.在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是( )
A.(3,﹣3)B.(﹣3,3)C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
7.如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC与E、F两点,则阴影部分的面积是( )【
A.1 B.2 C.3 D. 4
8.(2014•山东济宁)如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为,则点A'的坐标为( )
A. B.
C. D.
9.(2015•南昌模拟)如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在平面内,可作为旋转中心的点个数( )
A.1个 B.2个 C.3个 D.4个
10、(2015•河南省师大附中月考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=4,BC的中点为D.将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是( )
A.4 B.6 C.2+2 D.8
二、填空题:(每题3,共30分)
11、如图1,Rt△AOB绕着一点旋转到△A′∠A′O∠A′OB′的位置,可以看到点A旋转到点A′,OA旋转到OA′,∠AOB旋转到∠A′OB′,这些都是互相对应的点、线段和角.已知∠AOB=30°,∠AOB′=10°,那么点B的对应点是点______;线段OB的对应线段是线段______;∠A的对应角是______;旋转中心是点______;旋转的角度是______度.
12、将一个直角三角尺AOB绕直角顶点O旋转到如图3所示的位置,若∠AOD=110°,则旋转角的角度是______°,∠BOC=______°.
13、正三角形绕中心旋转__度的整倍数之后能和自己重合.
14、时钟6点到9点,时针转动了__度.
15、(☆☆☆2014•江西南昌)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .
16、如图所示,△ABC中,∠BAC=120°,∠DAE=60°,
AB=AC,△AEC绕点A旋转到△AFB的位置;
∠FAD= ,∠FBD= .
17.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为_____.
18、点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=
19.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M和点N的坐标分别是_____ ,
20、如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是_______.
三、解答题:(共60分)
21、(8分)如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.
(1)在图中标出旋转中心P的位置,并写出它的坐标;
(2)在图上画出再次旋转后的三角形④.
22.(8分)在如图所示的直角坐标系中,解答下列问题:
(1)分别写出A,B两点的坐标;
(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1.
23.(12分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当a=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当a为多少度时,△AOD是等腰三角形?
24.(10分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.
(1)旋转中心是点 ,旋转角度是 度;
(2)若连结EF,则△AEF是 三角形;并证明;
(3)若四边形AECF的面积为25,DE=2,求AE的长.
25.(10分)每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,
①写出A、B、C的坐标.
②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1.
26、(12分) 如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形.
(1)如果,,
①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为 ,线段的数量关系为 ;
②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
FD
图3
A
B
D
C
E
(2)如果,是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.
图2
A
B
D
E
C
F
图1
A
B
D
F
E
C
参考答案
一、 选择:
1、 A,2、D,3、C,4、D,5、B,6、A,7、A,8、D,9、C,10、B。
二、 填空:
11、 B′、OB′、∠A′、O、40°, 12、20°、70°, 13、60,14、90º ,
15、12-8 ,16、60º、60º,17、, 18、1, 19、(-1,-3)、(1,-3)
20、 (-3,3)。
三、解答题:(共60分)
21、解答:解:(1)旋转中心点P位置如图所示,(2分)
点P的坐标为(0,1);(4分)
(2)旋转后的三角形④如图所示.(8分)
22.解:(1)由点A、B在坐标系中的位置可知:A(2,0),B(-1,-4);
(2)如图所示:2)如图所示:
23.解答:(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴CO=CD,∠OCD=60°,
∴△COD是等边三角形.
(2)解:当α=150°时,△AOD是直角三角形.
理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴△BOC≌△ADC,
∴∠ADC=∠BOC=150°,
又∵△COD是等边三角形,
∴∠ODC=60°,
∴∠ADO=∠ADC-∠ODC=90°,
∵∠α=150°∠AOB=110°,∠COD=60°,
∴∠AOD=360°-∠α-∠AOB-∠COD=360°-150°-110°-60°=40°,
∴△AOD不是等腰直角三角形,即△AOD是直角三角形.
(3)解:①要使AO=AD,需∠AOD=∠ADO,
∵∠AOD=360°-110°-60°-α=190°-α,∠ADO=α-60°,
∴190°-α=α-60°,
∴α=125°;
②要使OA=OD,需∠OAD=∠ADO.
∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,
∴α-60°=50°,
∴α=110°;
③要使OD=AD,需∠OAD=∠AOD.
∵∠OAD=360°-110°-60°-α=190°-α,
∠AOD==120°-,
∴190°-α=120°-,
解得α=140°.
综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.
24.解:(1)如图,由题意得:
旋转中心是点A,旋转角度是90度.
故答案为A、90.
(2)由题意得:AF=AE,∠EAF=90°,
∴△AEF为等腰直角三角形.
故答案为等腰直角.
(3)由题意得:△ADE≌△ABF,
∴S四边形AECF=S正方形ABCD=25,
∴AD=5,而∠D=90°,DE=2,
∴.
25.解:①A(1,﹣4),B(5,﹣4),C(4,﹣1);②A1(﹣1,4),B1(﹣5,4),C1(﹣4,1),如图所示:
26、解:1.①垂直,相等;
②当点D在BC的延长线上时①的结论仍成立.
由正方形ADEF得 AD=AF ,∠DAF=90º.
∵∠BAC=90º,∴∠DAF=∠BAC , ∴∠DAB=∠FAC,
又AB=AC ,∴△DAB≌△FAC ,
∴CF=BD , ∠ACF=∠ABD.
∵∠BAC=90º, AB=AC ,
∴∠ABC=45º,∴∠ACF=45º,
∴∠BCF=∠ACB+∠ACF=90º.
即 CF⊥BD.
2.当∠ACB=45º时,CF⊥BD(如图).
理由:过点A作AG⊥AC交CB或CB的延长线于点G,
则∠GAC=90º,
∵∠ACB=45°,∠AGC=90°—∠ACB=45°,
∴∠ACB=∠AGC,∴AC=AG,
∵点D在线段BC上,∴点D在线段GC上,
由(1)①可知CF⊥BD.
第 10 页 共 10 页