温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
5.3.2
命题、定理、证明
5.3
命题
定理
证明
优秀领先 飞翔梦想 成人成才
5.3.2 命题、定理、证明
一、判断
1、判断下列语句是不是命题
(1)延长线段AB ( )
(2)两条直线相交,只有一交点 ( )
(3)画线段AB的中点 ( )
(4)若|x|=2,则x=2 ( )
(5)角平分线是一条射线 ( )
二、选择题
2.下列语句不是命题的是 ( )
A、两点之间,线段最短 B、不平行的两条直线有一个交点
C、x与y的和等于0吗? D、对顶角不相等。
3.下列命题中真命题是 ( )
A、两个锐角之和为钝角 B、两个锐角之和为锐角
C、钝角大于它的补角 D、锐角小于它的余角
4.命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。其中假命题有 ( )
A、1个 B、2个 C、3个 D、4个
三、解答题
5、分别指出下列各命题的题设和结论。
(1)如果a∥b,b∥c,那么a∥c
(2)同旁内角互补,两直线平行。
6、分别把下列命题写成“如果……,那么……”的形式。
(1)两点确定一条直线;
(2)等角的补角相等;
(3)内错角相等。
7、如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:
(1)∵a∥b,∴∠1=∠3(_________________);
(2)∵∠1=∠3,∴a∥b(_________________);
(3)∵a∥b,∴∠1=∠2(__________________);
(4) ∵a∥b,∴∠1+∠4=180º (_____________________)
(5)∵∠1=∠2,∴a∥b(__________________);
(6)∵∠1+∠4=180º,∴a∥b(_______________).
8、已知:如图AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF
C
A
B
D
E
F
1
2
证明:∵AB⊥BC,BC⊥CD(已知)
∴ = =90°( )
∵∠1=∠2(已知)
∴ = (等式性质)
∴BE∥CF( )
B
D
A
C
9、已知:如图,AC⊥BC,垂足为C,∠BCD是∠B的余角。
求证:∠ACD=∠B。
证明:∵AC⊥BC(已知)
∴∠ACB=90°( )
∴∠BCD是∠ACD的余角
∵∠BCD是∠B的余角(已知)
∴∠ACD=∠B( )
10、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。
A
D
B
C
E
F
1
2
3
4
求证:AD∥BE。
证明:∵AB∥CD(已知)
∴∠4=∠ ( )
∵∠3=∠4(已知)
∴∠3=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF( )
即∠ =∠
∴∠3=∠ ( )
∴AD∥BE( )
第 2 页 共 2 页