分享
23.2.2中心对称图形.doc
下载文档

ID:3222507

大小:1.10MB

页数:4页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
23.2.2 中心对称图形 23.2 中心对称 图形
优秀领先 飞翔梦想 23.2.2 中心对称图形 学习目标 1.经历观察图形的过程,建立中心对称图形的概念,会判断一个图形是不是中心对称图形。[来源:学科网] 2.通过动手操作,总结找中心对称图形对称中心的方法,发展归纳、总结的能力,积累问题的能力。[来源:学,科,网Z,X,X,K] 学习重点[来源:Z。xx。k.Com] 中心对称图形的概念及其他运用 学习难点 中心对称图形性质的灵活运用 教学准备 激 趣 明 标 本节课我们来学习一种具有特殊性质的图形,它们是一个图形经过旋转180°后旋转形成的图形,到底它们是怎样的呢?让我们一起来认识吧! 自 主 学 习 1.作图题. (1)作出线段AO关于O点的对称图形,如图所示. (2)作出三角形AOB关于O点的对称图形,如图所示. (1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它重合. 上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示. ∵AO=OC,BO=OD,∠AOB=∠COD ∴△AOB≌△COD ∴AB=CD 也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合. 因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 ,这个点就是它的对称中心 2.举出学过的哪些几何图形是中心对称图形 3.课前准备一些精美的中心对称图形,用图片给予展示。 合 作 展 示 例1. 如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,求折痕EF的长.[来源:学科网ZXXK] 学生通过自主学习,共同展示各个小组对以上内容的学习。教师给予适当的鼓励和点评。 当 [来源:学科网ZXXK] 堂 测 试 A B A B C E D 一、选择题 1.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A.等边三角形 B.等腰梯形 C.平行四边形 D.正六边形 2.下列图形中,是中心对称图形,但不是轴对称图形的是( ). A.正方形 B.矩形 C.菱形 D.平行四边形 3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是( ) A.21085 B.28015 C.58012 D.51082 二、填空题 1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________. 2.请你写出你所熟悉的三个中心对称图形_________. 3.中心对称图形具有什么特点(至少写出两个)_____________. 三、解答题 1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°. (1)判断下列命题的真假(在相应括号内填上“真”或“假”) ①等腰梯形是旋转对称图形,它有一个旋转角为180°;( ) ②矩形是旋转对称图形,它有一个旋转角为180°;( ) (2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号) ①正三角形;②正方形;③正六边形;④正八边形. (3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形. 2.如图,将矩形A1B1C1D1沿EF折叠,使B1点落在A1D1边上的B处;沿BG折叠,使D1点落在D处且BD过F点. (1)求证:四边形BEFG是平行四边形;[来源:学科网ZXXK] (2)连接BB,判断△B1BG的形状,并写出判断过程. 3.如图,直线y=2x+2与x轴、y轴分别交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1. (1)在图中画出△A1OB1; (2)设过A、A1、B三点的函数解析式为y=ax2+bx+c,求这个解析式. 提升小结 1. 通过本节课的学习你有什么收获?把你的收获与全班同学分享。 2. 你还有什么问题吗? 3. 教师点评各小组的学习表现。 补充完善 [来源:Z§xx§k.Com] 第 4 页 共 4 页

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开