温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
第2讲
整式与因式分解
整式
因式分解
优秀领先 飞翔梦想 成人成才
第2讲 整式与因式分解
一、 知识清单梳理
知识点一:代数式及相关概念
关键点拨及对应举例
1.代数式
(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或一个字母也是代数式.
(2)求代数式的值:用具体数值代替代数式中的字母,计算得出的结果,叫做求代数式的值.
求代数式的值常运用整体代入法计算.
例:a-b=3,则3b-3a=-9.
2.整式 (单项式、多项式)
(1)单项式:表示数字与字母积的代数式,单独的一个数或一个字母也叫单项式.其中的数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数.
(2)多项式:几个单项式的和.多项式中的每一项叫做多项式的项,次数最高的项的次数叫做多项式的次数.
(3)整式:单项式和多项式统称为整式.
(4)同类项:所含字母相同并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.
例:
(1)下列式子:①-2a2;②3a-5b;③x/2;④2/x;⑤7a2;⑥7x2+8x3y;⑦2017.其中属于单项式的是①③⑤⑦;多项式是②⑥;同类项是①和⑤.
(2)多项式7m5n-11mn2+1是六次三项式,常数项是 __1 .
知识点二:整式的运算
3.整式的加减运算
(1)合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
(2)去括号法则: 若括号外是“+”,则括号里的各项都不变号;若括号外是“-”,则括号里的各项都变号.
(3)整式的加减运算法则:先去括号,再合并同类项.
失分警示:去括号时,如果括号外面是符号,一定要变号,且与括号内每一项相乘,不要有漏项.
例:-2(3a-2b-1)=-6a+4b+2.
4.幂运算法则
(1)同底数幂的乘法:am·an=am+n;
(2)幂的乘方:(am)n=amn;
(3)积的乘方:(ab)n=an·bn;
(4)同底数幂的除法:am÷an=am-n (a≠0).
其中m,n都在整数
(1)计算时,注意观察,善于运用它们的逆运算解决问题.例:已知2m+n=2,则3×2m×2n=6.
(2)在解决幂的运算时,有时需要先化成同底数.例:2m·4m=23m.
5.整式的乘除运算
(1)单项式×单项式:①系数和同底数幂分别相乘;②只有一个字母的照抄.
(2)单项式×多项式: m(a+b)=ma+mb.
(3)多项式×多项式: (m+n)(a+b)=ma+mb+na+nb.
(4)单项式÷单项式:将系数、同底数幂分别相除.
(5)多项式÷单项式:①多项式的每一项除以单项式;②商相加.
失分警示:计算多项式乘以多项式时,注意不能漏乘,不能丢项,不能出现变号错.
例:(2a-1)(b+2)=2ab+4a-b-2.
(6)乘法
公式
平方差公式:(a+b)(a-b)=a2-b2.
注意乘法公式的逆向运用及其变形公式的运用
完全平方公式:(a±b)2=a2±2ab+b2. 变形公式:
a2+b2=(a±b)2∓2ab,ab=【(a+b)2-(a2+b2)】 /2
6.混合运算
注意计算顺序,应先算乘除,后算加减;若为化简求值,一般步骤为:化简、代入替换、计算.
例:(a-1)2-(a+3)(a-3)-10=_-2a__.
知识点五:因式分解
7.因式分解
(1)定义:把一个多项式化成几个整式的积的形式.
(2)常用方法:①提公因式法:ma+mb+mc=m(a+b+c).
②公式法:a2-b2=(a+b)(a-b);a2±2ab+b2=(a±b)2.
(3)一般步骤:①若有公因式,必先提公因式;②提公因式后,看是否能用公式法分解;③检查各因式能否继续分解.
(1) 因式分解要分解到最后结果不能再分解为止,相同因式写成幂的形式;
(2) 因式分解与整式的乘法互为逆运算.
第 2 页 共 2 页