分享
24.2.2第2课时 切线的判定与性1.doc
下载文档

ID:3221856

大小:1.30MB

页数:2页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
24.2.2 第2课时 切线的判定与性1 24.2 课时 切线 判定
优秀领先 飞翔梦想 成人成才 第2课时 切线的判定与性质 1.掌握判定直线与圆相切的方法,并能运用直线与圆相切的方法进行计算与证明. 2.掌握直线与圆相切的性质,并能运用直线与圆相切的性质进行计算与证明. 3.能运用直线与圆的位置关系解决实际问题.                     一、情境导入 约在6000年前,美索不达米亚人做出了世界上第一个轮子——圆型的木盘,你能设计一个办法测量这个圆形物体的半径吗? 二、合作探究 探究点一:切线的判定 【类型一】判定圆的切线 如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,求证:CD是⊙O的切线. 证明:连接OC,∵AC=CD,∠D=30°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°,∴∠1=60°,∴∠OCD=90°,∴OC⊥CD,∴CD是⊙O的切线. 方法总结:切线的判定方法有三种:①利用切线的定义,即与圆只有一个公共点的直线是圆的切线;②到圆心距离等于半径的直线是圆的切线;③经过半径的外端,并且垂直于这条半径的直线是圆的切线. 探究点二:切线的性质 【类型一】利用切线进行证明和计算 如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点,∠P=30°,连接AO、AB、AC. (1)求证:△ACB≌△APO; (2)若AP=,求⊙O的半径. (1)证明:∵PA为⊙O的切线,A为切点,∴∠OAP=90°.又∵∠P=30°,∴∠AOB=60°,又OA=OB,∴△AOB为等边三角形.∴AB=AO,∠ABO=60°.又∵BC为⊙O的直径,∴∠BAC=90°.在△ACB和△APO中,∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,∴△ACB≌△APO. (2)解:在Rt△AOP中,∠P=30°,AP=,∴AO=1,∴CB=OP=2,∴OB=1,即⊙O的半径为1. 【类型二】切线的性质与判定的综合应用 如图,AB是⊙O的直径,点F、C是⊙O上的两点,且==,连接AC、AF,过点C作CD⊥AF交AF的延长线于点D,垂足为D. (1)求证:CD是⊙O的切线; (2)若CD=2,求⊙O的半径. 分析:(1)连接OC,由弧相等得到相等的圆周角,根据等角的余角相等推得∠ACD=∠B,再根据等量代换得到∠ACO+∠ACD=90°,从而证明CD是⊙O的切线;(2)由==推得∠DAC=∠BAC=30°,再根据直角三角形中30°角所对的直角边等于斜边的一半即可求得AB的长,进而求得⊙O的半径. (1)证明:连接OC,BC.∵=,∴∠DAC=∠BAC.∵CD⊥AF,∴∠ADC=90°.∵AB是直径,∴∠ACB=90°.∴∠ACD=∠B.∵BO=OC,∴∠OCB=∠OBC,∵∠ACO+∠OCB=90°,∠OCB=∠OBC,∠ACD=∠ABC,∴∠ACO+∠ACD=90°,即OC⊥CD.又∵OC是⊙O的半径,∴CD是⊙O的切线. (2)解:∵==,∴∠DAC=∠BAC=30°.∵CD⊥AF,CD=2,∴AC=4.在Rt△ABC中,∠BAC=30°,AC=4,∴BC=4,AB=8,∴⊙O的半径为4. 【类型三】探究圆的切线的条件 如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D. (1)当点P在什么位置时,DP是⊙O的切线?请说明理由; (2)当DP为⊙O的切线时,求线段BP的长. 解析:(1)当点P是的中点时,得=,得出PA是⊙O的直径,再利用DP∥BC,得出DP⊥PA,问题得证; (2)利用切线的性质,由勾股定理得出半径长,进而得出△ABE∽△ADP,即可求出DP的长. 解:(1)当点P是的中点时,DP是⊙O的切线.理由如下:∵AB=AC,∴=,又∵=,∴=,∴PA是⊙O的直径.∵=,∴∠1=∠2,又AB=AC,∴PA⊥BC.又∵DP∥BC,∴DP⊥PA,∴DP是⊙O的切线. (2)连接OB,设PA交BC于点E.由垂径定理, 得BE=BC=6.在Rt△ABE中,由勾股定理,得AE==8.设⊙O的半径为r,则OE=8-r,在Rt△OBE中,由勾股定理,得r2=62+(8-r)2,解得r=.在Rt△ABC中,AP=2r=,AB=10,∴BP==. 三、板书设计 教学过程中,强调只要出现切线就要想到半径,就要想到有垂直的关系,要形成一个定势思维. 第 2 页 共 2 页

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开