分享
24.1.4 第2课时 圆内角四边形的性质及圆周角定理的综合运用.doc
下载文档

ID:3221855

大小:69.12KB

页数:4页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
24.1.4 第2课时 圆内角四边形的性质及圆周角定理的综合运用 24.1 课时 内角 四边形 性质 圆周角 定理 综合 运用
24.1.4 圆周角 第2课时 圆内角四边形的性质及圆周角定理的综合运用 一. 选择题。 1. 如图,圆心角∠AOB=120°,C、D、E是的四等分点,则弦OE和半径OA的关系是(    )     A. OA<DE                  B. DE<OA     C. DE=OA                  D. 以上均不对   2. 在下列语句中,叙述正确的个数为(    )     ①相等的圆周角所对弧相等     ②同圆等圆中,同弦或等弦所对圆周角相等     ③一边上的中线等于这条边的一半的三角形是直角三角形     ④等弧所对圆周角相等     A. 1个           B. 2个           C. 3个           D. 4个   3. 在半径等于7cm的圆内有长为的弦,则此弦所对圆周角为(    )     A. 60°或120°           B. 30°或150°           C. 60°          D. 120°   4. 下列命题中不正确的是(    )     A. 圆内接平行四边形是矩形 B. 圆内接菱形是正方形     C. 圆内接梯形是等腰梯形 D. 圆内接矩形是正方形   5. 如图,∠E=30°,AB=BC=CD,则∠ACD的度数为(    )     A. 12.5°              B. 15°          C. 20°          D. 22.5°   6. 四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是(    )     A. 1∶3∶2∶4                           B. 7∶5∶10∶8     C. 13∶1∶5∶17                 D. 1∶2∶3∶4   7. 圆内接四边形ABCD的一组对边AD、BC的延长线交于P,对角线AC、BD交于点Q,则图中共有相似三角形(    )     A. 4对           B. 2对           C. 1对           D. 3对 二. 填空题。   8. 一弦分圆周为5∶7,这弦所对的两圆周角分别为__________。   9. 如图,OA、OB、OC都是⊙O的半径,,∠AOB=80°,则∠BOC=__________,∠ABC=__________,∠ACB=_____∠CAB。   10. 如图,△ABC内接于⊙O,若∠ABC=50°,∠ACB=70°,则∠A=__________,=__________,∠BOC=___________,=___________=___________。   第9题图 第10题图 11. 圆内接四边形ABCD中,AC垂直平分BD,若∠BCD=80°,则∠BAC=__________。   12. 四边形ABCD内接于⊙O,若∠A∶∠B∶∠C∶∠D=2∶3∶4∶m,则m=__________,这个四边形最大内角是__________度,最小内角__________度,对角线AC是⊙O的__________。 三. 解答题。   13. 已知:如图,P是的中点,弦PC的延长线交AB的延长线于点D。     求证:   14. 已知:如图,⊙O和⊙O'交于A、B,过A引直线CD、EF,分别交两圆于C、D、E、F,EC、DF的延长线交于P。     求证:∠P+∠CBD=180°   【试题答案】 一. 选择题。   1. C            2. B        3. A        4. D        5. D        6. C        7. A 二. 填空题。   8. 105°和75°   9. 40°,120°,2   10. 60°,120°,120°,140°,100°   11. 50°   12. 3,120,60,直径 三. 解答题。   13. 连结AC ∵P是的中点 ∴ ∴∠PAB=∠PCA     又∵∠P=∠P ∴△PAD∽△PCA       14. 连结AB,则∠E=∠ABC     ∵四边形AFDB内接于圆     ∴∠PFE=∠ABD    

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开