分享
13.3.1 第2课时 等腰三角形的判定2.doc
下载文档

ID:3221279

大小:1.12MB

页数:6页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
13.3.1 第2课时 等腰三角形的判定2 13.3 课时 等腰三角形 判定
优秀领先 飞翔梦想 第2课时 等腰三角形的判定 一.选择题(共8小题) 1.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有(  ) A. 5个 B. 6个 C. 7个 D. 8个   第1题 第2题 第4题 7. 如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为(  ) A. 2 B. 3 C. 4 D. 5 3.下列条件中不能确定是等腰三角形的是(  ) A. 三条边都相等的三角形D. 一条中线把面积分成相等的两部分的三角形 B. 有一个锐角是45°的直角三角形C. 一个外角的平分线平行于三角形一边的三角形 4. 如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,给出四个条件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC是等腰三角形的方法有(  ) A. 2种 B. 3种 C. 4种 D. 6种 5.下列能断定△ABC为等腰三角形的是(  ) A. ∠A=30°,∠B=60° B. ∠A=50°,∠B=80° C. AB=AC=2,BC=4 D. AB=3,BC=7,周长为13 6.下列说法中:(1)顶角相等,并且有一腰相等的两个等腰三角形全等;(2)底边相等,且周长相等的两个等腰三角形全等;(3)腰长相等,且有一角是50°的两个等腰三角形全等;(4)两条直角边对应相等的两个直角三角形全等;错误的有(  ) A. 1个 B. 2个 C. 3个 D. 4个 7.已知下列各组数据,可以构成等腰三角形的是(  ) A. 1,2,1 B. 2,2,1 C. 1,3,1 D. 2,2,5 8.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是(  ) A. ①③④ B. ①②③④ C. ①②④ D. ①③  二.填空题(共10小题) 9.用若干根火柴(不折断)紧接着摆成一个等腰三角形,底边用了10根,则一腰至少要用 _________ 根火柴.  10.如图,∠BAC=100°,∠B=40°,∠D=20°,AB=3,则CD= _________    第10题 第11题 第14题 第18题 11.如图,△ABC是等腰三角形,且AB=AC,BM,CM分别平分∠ABC,∠ACB,DE经过点M,且DE∥BC,则图中有 _________ 个等腰三角形.  12.在△ABC中,与∠A相邻的外角是100°,要使△ABC是等腰三角形,则∠B的度数是 _________ .  13.在△ABC中,∠A=100°,当∠B= _________ °时,△ABC是等腰三角形.  14.如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1= _________ 度,图中有 _________ 个等腰三角形.  15.若三角形三边长满足(a﹣b)(a﹣c)=0,则△ABC的形状是 _________ .  16.如果一个三角形有两个角分别为80°,50°,则这个三角形是 _________ 三角形.  17.在平面上用18根火柴首尾相接围成等腰三角形,这样的等腰三角形一共可以围攻成 _________ 种. 18.如图,已知AD平分∠EAC,且AD∥BC,则△ABC一定是 _________ 三角形. 三.解答题(共5小题) 19.如图,在△ABC和△DCB中,AC与BD相交于点O.AB=DC,AC=BD. (1)求证:△ABC≌△DCB; (2)△OBC的形状是 _________ .(直接写出结论,不需证明)   20.已知:如图,OA平分∠BAC,∠1=∠2. 求证:△ABC是等腰三角形.   21.如图,在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC. (1)上述四个条件中,哪两个可以判定△ABC是等腰三角形? (2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形.   22.如图,△ABC中,∠A=36°,AB=AC,CD平分∠ACB,试说明△BCD是等腰三角形.   23.如图,四边形ABCD中,AB∥CD,AD∥BC,连接AC,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′. (1)求证:△ABC≌△CDA. (2)请直接写出图中所有的等腰三角形(不添加字母); (3)图中阴影部分的△AB′O和△CDO是否全等?若全等请给出证明;若不全等,请说明理由.   答案:一、DCDCBABA 二、9、6;10、3;11、5;12、80°或50°或20°;13、40度;14、72,3;15、等腰三角形; 16、等腰;17、4;18、等腰 三 、19、(1)证明:在△ABC和△DCB中, ∴△ABC≌△DCB(SSS). (2)解:∵△ABC≌△DCB, ∴∠OBC=∠OCB. ∴OB=OC. ∴△OBC为等腰三角形. 故填等腰三角形. 20、解答: 证明:作OE⊥AB于E,OF⊥AC于F, ∵AO平分∠BAC, ∴OE=OF(角平分线上的点到角两边的距离相等). ∵∠1=∠2, ∴OB=OC. ∴Rt△OBE≌Rt△OCF(HL). ∴∠5=∠6. ∴∠1+∠5=∠2+∠6. 即∠ABC=∠ACB. ∴AB=AC. ∴△ABC是等腰三角形. 21解:(1)①③,①④,②③和②④; (2)以①④为条件,理由: ∵OB=OC, ∴∠OBC=∠OCB. 又∵∠DBO=∠ECO, ∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB, ∴AB=AC, ∴△ABC是等腰三角形. 22解:△ABC中 ∵AB=AC,∠A=36° ∴∠B=∠ACB=(180°﹣∠A)=72° ∵CD平分∠ACB ∴∠DCB=∠ACB=36° 在△DBC中 ∠BDC=180°﹣∠B﹣∠DCB=72°=∠B ∴CD=CB 即△BCD是等腰三角形. 23、解:(1)证明:∵AB∥CD,AD∥BC, ∴∠DAC=∠BCA,∠ACD=∠BAC, 在△ABC和△CDA中,, ∴△ABC≌△CDA(ASA); (2)图中所有的等腰三角形有:△OAC,△ABB′,△CBB′; ∵AD∥BC, ∴∠DAC=∠ACB, 又∵△AB′C和△ABC关于AC所在的直线对称, ∴△AB′C≌△ABC, ∴∠ACB=∠ACB′,AB=AB′,即△ABB′为等腰三角形, ∴∠DAC=∠ACB′, ∴OA=OC,即△OAC为等腰三角形, ∵CB=CB′, ∴△CBB′为等腰三角形; (3)△AB′O≌△CDO,理由为: 证明:∵△AB′C≌△ABC,且△ABC≌△CDA, ∴△AB′C≌△CDA, ∴B′C=DA,AB′=CD, 又OA=OC, ∴DA﹣OA=B′C﹣OC,即OB′=OD, 在△AB′O和△CDO中,, ∴△AB′O≌△CDO. 第 6 页 共 6 页

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开