分享
13.2第2课时 用坐标表示轴对称2.doc
下载文档

ID:3221277

大小:1.07MB

页数:4页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
13.2 第2课时 用坐标表示轴对称2 课时 坐标 表示 轴对称
优秀领先 飞翔梦想 成人成才 第2课时 用坐标表示轴对称 【教学目标】 1.知识与能力: (1)能够作轴对称图形; (2)能够经过探索利用坐标来表示轴对称; (3)能够用轴对称的知识解决相应的数学问题.   2.过程与方法: 在探索问题的过程中体会知识间的关系,感受函数与生活的联系. 3.情感、态度与价值观: 培养学生的应用意识和探究精神. 【教学重点】 (1)能够作轴对称图形; (2)能够经过探索利用坐标来表示轴对称; (3)能够用轴对称的知识解决相应的数学问题. 【教学难点】 用轴对称知识解决相应的数学问题. 【教学过程】 一、 创设情境,激发学生兴趣,引出本节课要研究的内容 活动1 观察图片 操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么? 学生活动设计: 学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流. 教师活动设计: 教师组织活动,引导学生作以下归纳: (1) 由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样; (2) 新图形上一个点,都是原图形上的某一点关于直线l的对称点; (3) 连接任意一对对应点的线段被对称轴垂直平分. 活动2 问题 如图(1),已知△ABC和直线l,你能作出△ABC关于直线l对称的图形吗? 图(1) 图(2) 学生活动设计: 学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.根据轴对称的性质,只需要作出点A、B、C关于直线l的对称点再连接就可以了. 教师活动设计: 在学生交流的过程中,引导学生探索作对称点的方法.如图(2),作点A关于l的对称点的方法是: (1)过A作l的垂线垂足为O; (2)连接AO并延长到A′,使A′O=AO,则点A′就是点A关于直线l的对称点.最后进行归纳. 几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形; 对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形. 活动3 二、观察操作,主动探索,研究坐标系内的轴对称 活动4 问题 在平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律? 已知点 A(2,-3) B(-1,2) C(-6,-5) D(0.5,1) E(4,0) 关于x轴对称的点 关于y轴对称的点 学生活动设计: 学生动手画图,观察各个对称点与原来的点之间坐标的关系,经过讨论得出规律. 点(x,y)关于x轴对称的点的作标是(x,-y); 点(x,y)关于y轴对称的点的作标是(-x,y). 教师活动设计: 组织学生进行探索,观察猜测,然后进行归纳总结. 活动5 问题 如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1), C(-2,5),D(-5,4),分别作出四边形ABCD关于y轴和x轴对称的图形. 学生活动设计: 学生根据活动4中发现的规律,首先求出点A、B、C、D关于x轴、y轴的对称点,然后再连接对称点即可. 教师活动设计: 本活动主要巩固加深学生对利用坐标表示轴对称的理解,所以要特别关注学生对对称点的坐标的求解过程. 三、应用提高、拓展创新 问题 如图所示:要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 教师和学生活动设计: 分组讨论,让学生探索:在街道上找一点C,使得AC+BC为最小.通过学生活动,使他们懂得:只有A、C、B在一直线上时,才能使AC+BC最小,这时作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点. 学生自主探索其中的原因(原因:在直线l上取异于点C的点D,由于l垂直平分AA′,所以得到DA=DA′,所以DA+DB=DA′+DB,根据两点之间线段最短得到DA′+DB>A′B,而A′B=A′C+BC=AC+BC,于是有AD+DB>AC+BC.) 四、归纳小结、布置作业 小结: 1.作轴对称图形; 2.用坐标表示轴对称. 第 4 页 共 4 页

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开