3正方形的性质与判定第1课时正方形的性质教师备课素材示例●归纳导入在小学学过有一组邻边相等且有一个角是直角的平行四边形叫做正方形.正方形既是矩形又是菱形,它都有什么性质呢?(1)边的性质:__正方形的四条边都相等__;(2)角的性质:__正方形的四个角都是直角__;(3)对角线的性质:__正方形的两条对角线互相垂直平分且相等,每条对角线平分一组对角__;(4)对称性:__轴对称、中心对称__.【教学与建议】教学:归纳矩形、菱形的性质探求正方形的性质.建议:通过演示操作,发现正方形与矩形、菱形之间存在的特殊与一般的关系.●情景导入做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.今天我们先来学习正方形的有关知识.【教学与建议】教学:实际操作从矩形中折叠出正方形,感知正方形.建议:借助图形的特征从边、角、对角线、对称性上分析.命题角度1利用正方形的性质解决线段、角度的问题正方形的四条边都相等,正方形的四个角都是直角,对角线相等且互相垂直平分.【例1】(1)如图,正方形ABCD中,E是BD上一点,BE=BC,则∠BEC为(C)A.45°B.60°C.67.5°D.82.5°\s\up7()\s\up7()(2)如图,直线a经过正方形ABCD的顶点A,分别于正方形的顶点B,D作BF⊥a于点F,DE⊥a于点E.若DE=8,BF=5,则EF的长为__13__.命题角度2利用正方形的性质求解与面积有关的问题利用正方形轴对称性可以将不规则图形的面积转化为规则图形的面积.【例2】(1)用两条直线四等分正方形的面积,不同的画法有(D)A.一种B.两种C.三种D.无数种(2)如图,正方形ABCD的边长为1,E,F是对角线AC上的两点,EG⊥AB,EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于(B)A.1B.C.D.命题角度3利用正方形的性质求最小值在矩形或正方形中,可以根据垂线段最短或根据两点之间线段最短求最小值.【例3】(1)如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为(B)A.4B.2C.2D.1\s\up7()\s\up7()(2)如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P为AC上的一个动点,PF+PE的最小值是____.命题角度4正方形与其他图形的组合综合运用正方形、矩形、三角形等图形的性质,考查综合运用所学知识推理论证的能力.【例4】(1)如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为(B)A.B.2C...