优秀领先飞翔梦想成人成才第十九章函数19.2一次函数19.2.1正比例函数第1课时正比例函数的概念学习目标:1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.重点:正比例函数的概念及其简单应用;难点:会求正比例函数的解析式.一、知识链接1.若香蕉的单价为5元/千克,则其销售额m(元)与销售量n(千克)成比例,其比例系数为.2.举例说明什么是函数及自变量.二、新知预习1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长随半径r的变化而变化.(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化.(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n的变化而变化.(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体问题T(单位:℃)随冷冻时间t(单位:min)的变化而变化.(5)以上出现的四个函数解析式都是常数与自变量的形式.2.自主归纳:一般地,形如(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.三、自学自测1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?2.回答下列问题:(1)若y=(m-1)x是正比例函数,m取值范围是;(2)当n时,y=2xn是正比例函数;(3)当k时,y=3x+k是正比例函数.四、我的疑惑______________________________________________________________________________________________________________________________________________________www.youyi100.com第1页共4页自主学习教学备注学生在课前完成自主学习部分优秀领先飞翔梦想成人成才一、要点探究探究点1:正比例函数的概念问题1:正比例函数的定义是什么?需要注意哪些问题?典例精析例1:已知函数y=(m-1)是正比例函数,求m的值.方法总结:正比例函数满足的条件:(1)自变量的指数为1;(2)比例系数为常数,且不等于0.探究点2:求正比例函数的解析式例2若正比例函数当自变量x等于-4时,函数y的值等于2.(1)求正比例函数的解析式;(2)求当x=6时函数y的值.方法总结:求正比例函数解析式的步骤:(1)设:设函数解析式为y=kx;(2)代:将已知条件带入函数解析式;(3)求:求出比例系数k;(4)写:写出解析式.探究点3:正比例函数的简单应用问题2:2011年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南...