例1:用一根36cm长的铁丝围成一个矩形(接头忽略不计),它的一边长为xcm.(1)写出这个矩形的面积S与边长x之间的函数关系式。(2)一边长x为何值时,矩形的面积S最大?最大值是多少?例2:如图,在ΔABC中,AB=8cm,BC=6cm,∠B=90°,点P从点A开始沿AB边向点B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P,Q分别从A,B同时出发,几秒后ΔPBQ的面积最大?最大面积是多少?ABCPQABCPABCABCABCPQ例3:如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。ABCD解:(1)AB 为x米、篱笆长为24米∴花圃宽为(24-4x)米(3) 墙的可用长度为8米(2)当x=时,S最大值==36(平方米)32ababac442∴S=x(24-4x)=-4x2+24x(0