温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
精品
解析
2022
黑龙江省
牡丹江市
中考
数学
原卷版
2022年牡丹江市初中毕业学业考试数学试卷
一、选择题
1. 在下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
2. 下列计算正确的是( )
A. B. C. D.
3. 函数中,自变量x的取值范围是( )
A. B. C. D.
4. 由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( )
A. 3 B. 4 C. 5 D. 6
5. 不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )
A. B. C. D.
6. 如图,BD是的直径,A,C在圆上,,的度数是( )
A. 50° B. 45° C. 40° D. 35°
7. 如图,等边三角形OAB,点B在x轴正半轴上,,若反比例函数图象的一支经过点A,则k的值是( )
A. B. C. D.
8. 若关于x的方程无解,则m的值为( )
A. 1 B. 1或3 C. 1或2 D. 2或3
9. 圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )
A 90° B. 100° C. 120° D. 150°
10. 观察下列数据:,,,,,…,则第12个数是( )
A. B. C. D.
11. 下列图形是黄金矩形的折叠过程:第一步,如图(1),在一张矩形纸片一端折出一个正方形,然后把纸片展平;第二步,如图(2),把正方形折成两个相等的矩形再把纸片展平;第三步,折出内侧矩形的对角线AB,并把AB折到图(3)中所示的AD处;第四步,如图(4),展平纸片,折出矩形BCDE就是黄金矩形.则下列线段的比中:①,②,③,④,比值为的是( )
A. ①② B. ①③ C. ②④ D. ②③
12. 如图,抛物线的对称轴是,并与x轴交于A,B两点,若,则下列结论中:①;②;③;④若m为任意实数,则,正确的个数是( )
A 1 B. 2 C. 3 D. 4
二、填空题
13. 在2022年3月13日北京冬残奥会闭幕当天,奥林匹克官方旗舰店再次发售1000000只“冰墩墩”,很快便售罄.数据1000000用科学记数法表示为______.
14. 如图,,,请添加一个条件______,使.
15. 某商品进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件______元.
16. 一列数据:1,2,3,x,5,5的平均数是4,则这组数据的中位数是______.
17. 的直径,AB是的弦,,垂足为M,,则AC的长为______.
18. 抛物线向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是______.
19. 如图,在平面直角坐标系中,点,,将平行四边形OABC绕点O旋转90°后,点B的对应点坐标是______.
20. 如图,在等腰直角三角形ABC和等腰直角三角形ADE中,,点D在BC边上,DE与AC相交于点F,,垂足是G,交BC于点H.下列结论中:①;②;③若,,则;④,正确的是______.
三、解答题
21 先化简,再求值.,其中.
22. 已知抛物线与x轴交于,两点,与y轴交于点C,顶点为D.
(1)求该抛物线的解析式;
(2)连接BC,CD,BD,P为BD的中点,连接CP,则线段CP的长是______.注:抛物线的对称轴是直线,顶点坐标是.
23. 在菱形ABCD中,对角线AC和BD的长分别是6和8,以AD为直角边向菱形外作等腰直角三角形ADE.连接CE.请用尺规或三角板作出图形,并直接写出线段CE的长.
24. 为推进“冰雪进校园”活动,我市某初级中学开展:A.速度滑冰,B.冰尜,C.雪地足球,D.冰壶,E.冰球等五种冰雪体育活动,并在全校范围内随机抽取了若干名学生,对他们最喜爱的冰雪体育活动的人数进行统计(要求:每名被抽查的学生必选且只能选择一种),绘制了如图所示的条形统计图和扇形统计图.
请解答下列问题:
(1)这次被抽查的学生有多少人?
(2)请补全条形统计图,并写出扇形统计图中B类活动扇形圆心角的度数是______;
(3)若该校共有1500人,请你估计全校最喜爱雪地足球的学生有多少人?
25. 在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.
请解答下列问题:
(1)填空:甲的速度为______米/分钟,乙的速度为______米/分钟;
(2)求图象中线段FG所在直线表示y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;
(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.
26. 如图,和,点E,F在直线BC上,,,.如图①,易证:.请解答下列问题:
(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;
(2)请选择(1)中任意一种结论进行证明;
(3)若,,,,则______,______.
27. 某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等.请解答下列问题:
(1)求A,B两种防疫用品每箱的成本;
(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?
(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)
28. 如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,AD//BC,BD平分,交AO于点E,交AC于点F,.若OB,OC的长分别是一元二次方程的两个根,且.
请解答下列问题:
(1)求点B,C的坐标;
(2)若反比例函数图象的一支经过点D,求这个反比例函数的解析式;
(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.