1广东省2013年普通高校本科插班生招生考试《高等数学》试题答案及评分参考一、单项选择题(本大题共5小题,每小题3分,共15分)1.C2.B3.C4.A5.D二、填空题(本大题共5小题,每小题3分,共15分)6.127.1(1)ln3x8.1e9.10.2三、计算题(本大题共8小题,每小题6分,共48分)11.解:原式1111121cos(1)()sin(1)limlimlimcos(1)111xxxxxxxxeeexeexx12.解:由题意知:(0)(0)(0)0afbff,(0)2(0)0afbf,因为(0)(0)0ff,即(0)0(0)0ff,所以1020abab,由此解得21ab,.13.解:方法一等式两边对x求导数得:2()ln2xyxyyxyye,即2(1ln)2lnxyxxyeyy,所以22ln1lnxdyeyyydxxxy.又因为0x时,故02xdydx.方法二设2()lnxFxxyyye,即2ln2,ln1xxyFyyeFxyx,所以22ln22lnln1ln1xxxydyFyyeeyydxFxyxxyx.2又因为0x时,1y故02xdydx.14.解:函数的定义域为(,),322222111(1)444(4)xyyxxxxx,令0y,解得0x,当0x时,0y;当0x时0y.故曲线的凹区间为(,0);故曲线的凸区间为(0,);曲线的拐点为(0,ln2).15.解式22sin(cos)cosxdxx.2221cos(cos)cos1(cos)(cos)cos1cos.cosxdxxdxdxxxCx16.解:令1xt,则212xtdxtdt,,原式2333122111222(1)2(2arctan)|2(31)(1)13ttdtdtttttt.17.解:因为2222xyxyzzyexexy,,所以2222xyxyzzdzdxdyyedxxedyxy,2222222222(2)(12)xyxyxyzeyexyexyxy18.解:由微分方程的特征方程2210rrk,解得1,2244(1)12krk,3所以当0k时,方程有两个不相等的实根1k和1k;当0k时,方程有唯一实根1;故当0k时,通解为(1)(1)12kxkxyCeCe;当0k时,通解为12()xyCCxe.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.由题设条件知,积分区域{(,)|01,}xDxyxeye,如图交换积分次序得2lnln0101(21)(21)()(21)[]ln1ln1|eyeyxyxxyIdydxdyyy211(21)lnln()eeyydyydyy22111()ln()|eeyyyyydyy22213()()|222eyeeey...