1广东省2017年普通高校本科插班生招生考试《高等数学》试题答案及评分参考一、单项选择题(本大题共5小题,每小题3分,共15分)1.C2.D3.B4.C5.B二、填空题(本大题共5小题,每个空3分,共15分)6.327.11p8.21x9.3312xxCeCe10.1三、计算题(本大题共8小题,每小题6分,共48分)11.33330000231313333limlimlimlim911cos12xxxxxxxxexexeexxx.12.2222lnln21(2ln)(2ln)xxxxxxyxeyexxxxxxxx,21(2ln1)xxx.13.2()(1)1fxx,222(1)1()2(1)1(1)1xxfxxx,令()0fx,解得1x.当1x时,()0fx;当1x时,()0fx,故函数()fx的凹区间为(1,),凸区间为(,1);拐点为(1,0).15.令3(,,)()Fxyzxyztanz,则223(),3(),xyFxyFxy21seczFz,故22223()3(),1secsec1yxzzFzFxyzxyxFzyFz,因此22223()3()011zzxyxyxyseczsecz.16.积分区域D如图所示,由被积函数的特点选择先y后x的积分,即2:01,0Dxyx,则223332231112100000011(1)33||xxxxxxxDeddxedyeydxxedxee.17.设曲线D的方程为yyx,由题可知2yxy,变换为2yyx,这是一个一阶线性微分方程,由其通解公式得1(2)(2)drdxxxyexedxCexedxC(2)(22)xxxxxexdeCexeeC22xxCe(C为任意常数)又由:(0)1y,可知3C,即223xyxe.18.221111414()!!nnnnnnnnn令1144!4limlimlim01!(1)!41nnnnnnnnnvnvnvnn,,可知级数14!nnn收敛,而级数211nn为1p的p级数,可知其收敛,故由级数的基本性质可知原级数收敛.四、综合题(本大题共2小题,第19小题12分,第20小题10分,共22分)19.(1)212111lim()limlim111xxxxxfxxx故函数()yfx的水平渐近线方程为1y;(2)当01x时,()0fx,故所求旋转体体积为21122200112()11xxxxVdxdxxx112102002(1)(1ln(1)|)(1ln2)1xdxdxxx.20.(1)令1()()()arctanFxfxfxx,32222211111()()011111Fxxxxxx,则可知()FxC,C为常数,当1x时,(1)(1)(1)442FCf...