温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
全国通用
jiaoyupan.com教育盘
专题
22
有关
解答
2020
年中
数学
真题分项
汇编
教师版
全国
通用
jiaoyupan
com
教育
2020年中考数学真题分项汇编(全国通用)
专题22与圆的有关解答题
一.解答题(共50小题)
1.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.
(1)求证:CD是⊙O的切线;
(2)若AD=8,BECE=12,求CD的长.
【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;
(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.
【解析】(1)证明:连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵CE⊥AB,
∴∠CEB=90°,
∴∠ECB+∠ABC=∠ABC+∠CAB=90°,
∴∠A=∠ECB,
∵∠BCE=∠BCD,
∴∠A=∠BCD,
∵OC=OA,
∴∠A=∠ACO,
∴∠ACO=∠BCD,
∴∠ACO+∠BCO=∠BCO+∠BCD=90°,
∴∠DCO=90°,
∴CD是⊙O的切线;
(2)解:∵∠A=∠BCE,
∴tanA=BCAC=tan∠BCE=BECE=12,
设BC=k,AC=2k,
∵∠D=∠D,∠A=∠BCD,
∴△ACD∽△CBD,
∴BCAC=CDAD=12,
∵AD=8,
∴CD=4.
2.(2020•温州)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AC上一点,∠ADC=∠G.
(1)求证:∠1=∠2.
(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.
【分析】(1)根据圆周角定理和AB为⊙O的直径,即可证明∠1=∠2;
(2)连接DF,根据垂径定理可得FD=FC=10,再根据对称性可得DC=DF,进而可得DE的长,再根据锐角三角函数即可求出⊙O的半径.
【解析】(1)∵∠ADC=∠G,
∴AC=AD,
∵AB为⊙O的直径,
∴BC=BD,
∴∠1=∠2;
(2)如图,连接DF,
∵AC=AD,AB是⊙O的直径,
∴AB⊥CD,CE=DE,
∴FD=FC=10,
∵点C,F关于DG对称,
∴DC=DF=10,
∴DE=5,
∵tan∠1=25,
∴EB=DE•tan∠1=2,
∵∠1=∠2,
∴tan∠2=25,
∴AE=DEtan∠2=252,
∴AB=AE+EB=292,
∴⊙O的半径为294.
3.(2020•衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.
(1)求证:∠CAD=∠CBA.
(2)求OE的长.
【分析】(1)利用垂径定理以及圆周角定理解决问题即可.
(2)证明△AEC∽△BCA,推出CEAC=ACAB,求出EC即可解决问题.
【解析】(1)证明:∵AE=DE,OC是半径,
∴AC=CD,
∴∠CAD=∠CBA.
(2)解:∵AB是直径,
∴∠ACB=90°,
∵AE=DE,
∴OC⊥AD,
∴∠AEC=90°,
∴∠AEC=∠ACB,
∴△AEC∽△BCA,
∴CEAC=ACAB,
∴CE6=610,
∴CE=3.6,
∵OC=12AB=5,
∴OE=OC﹣EC=5﹣3.6=1.4.
4.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:
证明:连结OC,
∵OA=OB,
∴∠A=∠B,
又∵OC=OC,
∴△OAC≌△OBC,
∴AC=BC.
小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.
【分析】连结OC,根据切线的性质和等腰三角形的性质即可得到结论.
【解析】证法错误;
证明:连结OC,
∵⊙O与AB相切于点C,
∴OC⊥AB,
∵OA=OB,
∴AC=BC.
5.(2020•湖州)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.
(1)求证:∠CAD=∠ABC;
(2)若AD=6,求CD的长.
【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;
(2)由圆周角定理可得CD=AC,由弧长公式可求解.
【解析】(1)∵BC平分∠ABD,
∴∠DBC=∠ABC,
∵∠CAD=∠DBC,
∴∠CAD=∠ABC;
(2)∵∠CAD=∠ABC,
∴CD=AC,
∵AD是⊙O的直径,AD=6,
∴CD的长=12×12×π×6=32π.
6.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC于点D,过点D作DE∥BC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.
【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;
(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.
【解析】(1)连接OD,如图:
∵OA=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB,
∴∠DAE=∠OAD,
∴∠ADO=∠DAE,
∴OD∥AE,
∵DE∥BC,
∴∠E=90°,
∴∠ODE=180°﹣∠E=90°,
∴DE是⊙O的切线;
(2)∵AB是⊙O的直径,
∴∠ADB=90°,
∵OF=1,BF=2,
∴OB=3,
∴AF=4,BA=6.
∵DF⊥AB,
∴∠DFB=90°,
∴∠ADB=∠DFB,
又∵∠DBF=∠ABD,
∴△DBF∽△ABD,
∴BDBA=BFBD,
∴BD2=BF•BA=2×6=12.
∴BD=23.
7.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.
(1)求证:DC∥AP;
(2)求AC的长.
【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;
(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.
【解析】(1)证明:∵AP是⊙O的切线,
∴∠OAP=90°,
∵BD是⊙O的直径,
∴∠BCD=90°,
∵OA∥CB,
∴∠AOP=∠DBC,
∴∠BDC=∠APO,
∴DC∥AP;
(2)解:∵AO∥BC,OD=OB,
∴延长AO交DC于点E,
则AE⊥DC,OE=12BC,CE=12CD,
在Rt△AOP中,OP=62+82=10,
由(1)知,△AOP∽△CBD,
∴DBOP=BCOA=DCAP,
即1210=BC6=DC8,
∴BC=365,DC=485,
∴OE=185,CE=245,
在Rt△AEC中,AC=AE2+CE2=(6+185)2+(245)2=2455.
8.(2020•聊城)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.
(1)试证明DE是⊙O的切线;
(2)若⊙O的半径为5,AC=610,求此时DE的长.
【分析】(1)连接OD、BD,求出BD⊥AC,瑞成AD=DC,根据三角形的中位线得出OD∥BC,推出OD⊥DE,根据切线的判定推出即可;
(2)根据题意求得AD,根据勾股定理求得BD,然后证得△CDE∽△ABD,根据相似三角形的性质即可求得DE.
【解析】(1)证明:连接OD、BD,
∵AB是⊙O直径,
∴∠ADB=90°,
∴BD⊥AC,
∵AB=BC,
∴D为AC中点,
∵OA=OB,
∴OD∥BC,
∵DE⊥BC,
∴DE⊥OD,
∵OD为半径,
∴DE是⊙O的切线;
(2)由(1)知BD是AC的中线,
∴AD=CD=12AC=310,
∵O的半径为5,
∴AB=6,
∴BD=AB2-AD2=102-(310)2=10,
∵AB=AC,
∴∠A=∠C,
∵∠ADB=∠CED=90°,
∴△CDE∽△ABD,
∴CDAB=DEBD,即31010=DE10,
∴DE=3.
9.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC于点D.
(1)求证:∠BAC=2∠ABD;
(2)当△BCD是等腰三角形时,求∠BCD的大小;
(3)当AD=2,CD=3时,求边BC的长.
【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.
(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.
(3)如图3中,作AE∥BC交BD的延长线于E.则AEBC=ADDC=23,推出AOOH=AEBH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.
【解析】(1)证明:连接OA.
A
∵AB=AC,
∴AB=AC,
∴OA⊥BC,
∴∠BAO=∠CAO,
∵OA=OB,
∴∠ABD=∠BAO,
∴∠BAC=2∠BAD.
(2)解:如图2中,延长AO交BC于H.
①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,
∵AB=AC,
∴∠ABC=∠C,
∴∠DBC=2∠ABD,
∵∠DBC+∠C+∠BDC=180°,
∴8∠ABD=180°,
∴∠C=3∠ABD=67.5°.
②若CD=CB,则∠CBD=∠CDB=3∠ABD,
∴∠C=4∠ABD,
∵∠DBC+∠C+∠CDB=180°,
∴10∠ABD=180°,
∴∠BCD=4∠ABD=72°.
③若DB=DC,则D与A重合,这种情形不存在.
综上所述,∠C的值为67.5°或72°.
(3)如图3中,作AE∥BC交BD的延长线于E.
则AEBC=ADDC=23,
∴AOOH=AEBH=43,设OB=OA=4a,OH=3a,
∵BH2=AB2﹣AH2=OB2﹣OH2,
∴25﹣49a2=16a2﹣9a2,
∴a2=2556,
∴BH=524,
∴BC=2BH=522.
10.(2020•金华)如图,AB的半径OA=2,OC⊥AB于点C,∠AOC=60°.
(1)求弦AB的长.
(2)求AB的长.
【分析】(1)根据题意和垂径定理,可以求得AC的长,然后即可得到AB的长;
(2)根据∠AOC=60°,可以得到∠AOB的度数,然后根据弧长公式计算即可.
【解析】(1)∵AB的半径OA=2,OC⊥AB于点C,∠AOC=60°,
∴AC=OA•sin60°=2×32=3,
∴AB=2AC=23;
(2)∵OC⊥AB,∠AOC=60°,
∴∠AOB=120°,
∵OA=2,
∴AB的长是:120π×2180=4π3.
11.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,AC=CD=DB,连接AD,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线.
(2)若直径AB=6,求AD的长.
【分析】(1)连接OD,根据已知条件得到∠BOD=13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;
(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.
【解析】(1)证明:连接OD,
∵AC=CD=DB,
∴∠BOD=13×180°=60°,
∵CD=DB,
∴∠EAD=∠DAB=12∠BOD=30°,
∵OA=OD,
∴∠ADO=∠DAB=30°,
∵DE⊥AC,
∴∠E=90°,
∴∠EAD+∠EDA=90°,
∴∠EDA=60°,
∴∠EDO=∠EDA+∠ADO=90°,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)解:连接BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵∠DAB=30°,AB=6,
∴BD=12AB=3,
∴AD=62-32=33.
12.(2020•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.
(1)求证:∠C=∠AGD;
(2)已知BC=6.CD=4,且CE=2AE,求EF的长.
【分析】(1)连接BD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠ABC=90°,得到∠C=∠ABD,根据圆周角定理即可得到结论;
(2)根据相似三角形的判定和性质以及勾股定理即可得到结论.
【解析】(1)证明:连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∵BC是⊙O的切线,
∴∠ABC=90°,
∴∠C+∠CAB=90°,
∴∠C=∠ABD,
∵∠AGD=∠ABD,
∴∠AGD=∠C;
(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,
∴△ABC∽△BDC,
∴BCAC=CDBC,
∴6AC=46,
∴AC=9,
∴AB=AC2-BC2=35,
∵CE=2AE,
∴AE=3,CE=6,
∵FH⊥AB,
∴FH∥BC,
∴△AHE∽△ABC,
∴AHAB=EHBC=AEAC,
∴AH35=EH6=39,
∴AH=5,EH=2,
连接AF,BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠AEH+∠BFH=∠AFH+∠FAH=90°,
∴∠FAH=∠BFH,
∴△AFH∽△FBH,
∴FHAH=BHFH,
∴FH5=25FH,
∴FH=10,
∴EF=10-2.
13.(2020•河南)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.
使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.
为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.
已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B, AB=OB,EN切半圆O于F .
求证: EB,EO就把∠MEN三等分 .
【分析】根据垂直的定义得到∠ABE=∠OBE=90°,根据全等三角形的性质得到∠1=∠2,根据切线的性质得到∠2=∠3,于是得到结论.
【解析】已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.
求证:EB,EO就把∠MEN三等分,
证明:∵EB⊥AC,
∴∠ABE=∠OBE=90°,
∵AB=OB,BE=BE,
∴△ABE≌△OBE(SAS),
∴∠1=∠2,
∵BE⊥OB,
∴BE是⊙E的切线,
∵EN切半圆O于F,
∴∠2=∠3,
∴∠1=∠2=∠3,
∴EB,EO就把∠MEN三等分.
故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.
14.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.
(1)求证:△CBA≌△DAB;
(2)若BE=BF,求证:AC平分∠DAB.
【分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;
(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.
【解析】(1)证明:∵AB是半圆O的直径,
∴∠ACB=∠ADB=90°,
在Rt△CBA与Rt△DAB中,BC=ADBA=AB,
∴Rt△CBA≌Rt△DAB(HL);
(2)解:∵BE=BF,由(1)知BC⊥EF,
∴∠E=∠BFE,
∵BE是半圆O所在圆的切线,
∴∠ABE=90°,
∴∠E+∠BAE=90°,
由(1)知∠D=90°,
∴∠DAF+∠AFD=90°,
∵∠AFD=∠BFE,
∴∠AFD=∠E,
∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,
∴∠DAF=∠BAF,
∴AC平分∠DAB.
15.(2020•河南)小亮在学习中遇到这样一个问题:
如图,点D是BC上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.
小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:
(1)根据点D在BC上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.
BD/cm
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
CD/cm
8.0
7.7
7.2
6.6
5.9
a
3.9
2.4
0
FD/cm
8.0
7.4
6.9
6.5
6.1
6.0
6.2
6.7
8.0
操作中发现:
①“当点D为BC的中点时,BD=5.0cm”.则上表中a的值是 5 ;
②“线段CF的长度无需测量即可得到”.请简要说明理由.
(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为yCD和yFD,并在平面直角坐标系xOy中画出了函数yFD的图象,如图所示.请在同一坐标系中画出函数yCD的图象;
(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).
【分析】(1)①由BD=CD可求BD=CD=a=5cm;
②由“AAS”可证△BAD≌△CAF,可得BD=CF,即可求解;
(2)由题意可画出函数图象;
(3)结合图象可求解.
【解析】(1)∵点D为BC的中点,
∴BD=CD,
∴BD=CD=a=5cm,
故答案为:5;
(2)∵点A是线段BC的中点,
∴AB=AC,
∵CF∥BD,
∴∠F=∠BDA,
又∵∠BAD=∠CAF,
∴△BAD≌△CAF(AAS),
∴BD=CF,
∴线段CF的长度无需测量即可得到;
(3)由题意可得:
(4)由题意画出函数yCF的图象;
由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.
16.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.
(1)求证:直线DH是⊙O的切线;
(2)若AB=10,BC=6,求AD,BH的长.
【分析】(1)连接OD,根据圆周角定理得到∠AOD=12∠AOB=90°,根据平行线的性质得到∠ODH=90°,于是得到结论;
(2)连接CD,根据圆周角定理得到∠ADB=∠ACB=90°,推出△ABD是等腰直角三角形,得到AB=10,解直角三角形得到AC=102-62=8,求得∠CAD=∠DBH,根据平行线的性质得到∠BDH=∠OBD=45°,根据相似三角形的性质即可得到结论.
【解析】(1)证明:连接OD,
∵AB为⊙O的直径,点D是半圆AB的中点,
∴∠AOD=12∠AOB=90°,
∵DH∥AB,
∴∠ODH=90°,
∴OD⊥DH,
∴直线DH是⊙O的切线;
(2)解:连接CD,
∵AB为⊙O的直径,
∴∠ADB=∠ACB=90°,
∵点D是半圆AB的中点,
∴AD=DB,
∴AD=DB,
∴△ABD是等腰直角三角形,
∵AB=10,
∴AD=10sin∠ABD=10sin45°=10×22=52,
∵AB=10,BC=6,
∴AC=102-62=8,
∵四边形ABCD是圆内接四边形,
∴∠CAD+∠CBD=180°,
∵∠DBH+∠CBD=180°,
∴∠CAD=∠DBH,
由(1)知∠AOD=90°,∠OBD=45°,
∴∠ACD=45°,
∵DH∥AB,
∴∠BDH=∠OBD=45°,
∴∠ACD=∠BDH,
∴△ACD∽△BDH,
∴ACBD=ADBH,
∴852=52BH,
解得:BH=254.
17.(2020•长沙)如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.
(1)求证:DC为⊙O的切线.
(2)若AD=3,DC=3,求⊙O的半径.
【分析】(1)如图,连接OC,根据已知条件可以证明∠OCA=∠DAC,得AD∥OC,由AD⊥DC,得OC⊥DC,进而可得DC为⊙O的切线;
(2)过点O作OE⊥AC于点E,根据Rt△ADC中,AD=3,DC=3,可得DAC=30°,再根据垂径定理可得AE的长,进而可得⊙O的半径.
【解析】(1)如图,连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠DAC=∠OAC,
∴∠OCA=∠DAC,
∴AD∥OC,
∵AD⊥DC,
∴OC⊥DC,
又OC是⊙O的半径,
∴DC为⊙O的切线;
(2)过点O作OE⊥AC于点E,
在Rt△ADC中,AD=3,DC=3,
∴tan∠DAC=DCAD=33,
∴∠DAC=30°,
∴AC=2DC=23,
∵OE⊥AC,
根据垂径定理,得
AE=EC=12AC=3,
∵∠EAO=∠DAC=30°,
∴OA=AEcos30°=2,
∴⊙O的半径为2.
18.(2020•襄阳)如图,AB是⊙O的直径,E,C是⊙O上两点,且EC=BC,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.
(1)判定直线CD与⊙O的位置关系,并说明理由;
(2)若AB=4,CD=3,求图中阴影部分的面积.
【分析】(1)连接OC,根据EC=BC,求得∠CAD=∠BAC,根据等腰三角形的性质得到∠BAC=∠ACO,推出AD∥OC,根据平行线的性质得到OC⊥CD,于是得到CD是⊙O的切线;
(2)连接OE,连接BE交OC于F,根据垂径定理得到OC⊥BE,BF=EF,由圆周角定理得到∠AEB=90°,根据矩形的性质得到EF=CD=3,根据勾股定理得到AE=AB2-BE2=42-(23)2=2,求得∠AOE=60°,连接CE,推出CE∥AB,根据三角形和扇形的面积公式即可得到结论.
【解析】(1)证明:连接OC,
∵EC=BC,
∴∠CAD=∠BAC,
∵OA=OC,
∴∠BAC=∠ACO,
∴∠CAD=∠ACO,
∴AD∥OC,
∵AD⊥CD,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)解:连接OE,连接BE交OC于F,
∵EC=BC,
∴OC⊥BE,BF=EF,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠FED=∠D=∠EFC=90°,
∴四边形DEFC是矩形,
∴EF=CD=3,
∴BE=23,
∴AE=AB2-BE2=42-(23)2=2,
∴AE=12AB,
∴∠ABE=30°,
∴∠AOE=60°,
∴∠BOE=120°,
∵EC=BC,
∴∠COE=∠BOC=60°,
连接CE,
∵OE=OC,
∴△COE是等边三角形,
∴∠ECO=∠BOC=60°,
∴CE∥AB,
∴S△ACE=S△COE,
∵∠OCD=90°,∠OCE=60°,
∴∠DCE=30°,
∴DE=33CD=1,
∴AD=3,
∴图中阴影部分的面积=S△ACD﹣S扇形COE=12×3×3-60⋅π×22360=332-2π3.
19.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.
(1)判断BC与⊙O的位置关系,并说明理由;
(2)若AD=8,AE=10,求BD的长.
【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;
(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2-AC2=82+(325)2=8415,根据相似三角形的性质即可得到结论.
【解析】(1)BC与⊙O相切,
理由:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∵OD为半径,
∴BC是⊙O切线;
(2)连接DE,
∵AE是⊙O的直径,
∴∠ADE=90°,
∵∠C=90°,
∴∠ADE=∠C,
∵∠EAD=∠DAC,
∴△ADE∽△ACD,
∴AEAD=ADAC,
108=8AC,
∴AC=325,
∴CD=AD2-AC2=82-(325)2=245,
∵OD⊥BC,AC⊥BC,
∴△OBD∽△ABC,
∴ODAC=BDBC,
∴5325=BDBD+245,
∴BD=1207.
20.(2020•淮安)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若∠A=30°,OP=1,求图中阴影部分的面积.
【分析】(1)根据等边对等角得∠CPB=∠CBP,根据垂直的定义得∠OBC=90°,即OB⊥CB,则CB与⊙O相切;
(2)根据三角形的内角和定理得到∠APO=60°,推出△PBD是等边三角形,得到∠PCB=∠CBP=60°,求得BC=1,根据勾股定理得到OB=OC2-BC2=3,根据三角形和扇形的面积公式即可得到结论.
【解析】(1)CB与⊙O相切,
理由:连接OB,
∵OA=OB,
∴∠OAB=∠OBA,
∵CP=CB,
∴∠CPB=∠CBP,
在Rt△AOP中,∵∠A+∠APO=90°,
∴∠OBA+∠CBP=90°,
即:∠OBC=90°,
∴OB⊥CB,
又∵OB是半径,
∴CB与⊙O相切;
(2)∵∠A=30°,∠AOP=90°,
∴∠APO=60°,
∴∠BPD=∠APO=60°,
∵PC=CB,
∴△PBD是等边三角形,
∴∠PCB=∠CBP=60°,
∴∠OBP=∠POB=30°,
∴OP=PB=PC=1,
∴BC=1,
∴OB=OC2-BC2=3,
∴图中阴影部分的面积=S△OBC﹣S扇形OBD=12×1×3-30⋅π×(3)2360=32-π4.
21.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.
求证:(1)四边形DBCF是平行四边形;
(2)AF=EF.
【分析】(1)根据等腰三角形的性质得出∠BAC=∠B,根据平行线的性质得出∠ADF=∠B,求出∠ADF=∠CFD,根据平行线的判定得出BD∥CF,根据平行四边形的判定得出即可;
(2)求出∠AEF=∠B,根据圆内接四边形的性质得出∠ECF+∠EAF=180°,根据平行线的性质得出∠ECF+∠B=180°,求出∠AEF=∠EAF,根据等腰三角形的判定得出即可.
【解析】证明:(1)∵AC=BC,
∴∠BAC=∠B,
∵DF∥BC,
∴∠ADF=∠B,
∵∠BAC=∠CFD,
∴∠ADF=∠CFD,
∴BD∥CF,
∵DF∥BC,
∴四边形DBCF是平行四边形;
(2)连接AE,
∵∠ADF=∠B,∠ADF=∠AEF,
∴∠AEF=∠B,
∵四边形AECF是⊙O的内接四边形,
∴∠ECF+∠EAF=180°,
∵BD∥CF,
∴∠ECF+∠B=180°,
∴∠EAF=∠B,
∴∠AEF=∠EAF,
∴AE=EF.
22.(2020•辽阳)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.
(1)求证:DE与⊙A相切;
(2)若∠ABC=60°,AB=4,求阴影部分的面积.
【分析】(1)证明:连接AE,根据平行四边形的性质得到AD=BC,AD∥BC,求得∠DAE=∠AEB,根据全等三角形的性质得到∠DEA=∠CAB,得到DE⊥AE,于是得到结论;
(2)根据已知条件得到△ABE是等边三角形,求得AE=BE,∠EAB=60°,得到∠CAE=∠ACB,得到CE=BE,根据三角形和扇形的面积公式即可得到结论.
【解析】(1)证明:连接AE,
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠DAE=∠AEB,
∵AE=AB,
∴∠AEB=∠ABC,
∴∠DAE=∠ABC,
∴△AED≌△BAC(AAS),
∴∠DEA=∠CAB,
∵∠CAB=90°,
∴∠DEA=90°,
∴DE⊥AE,
∵AE是⊙A的半径,
∴DE与⊙A相切;
(2)解:∵∠ABC=60°,AB=AE=4,
∴△ABE是等边三角形,
∴AE=BE,∠EAB=60°,
∵∠CAB=90°,
∴∠CAE=90°﹣∠EAB=90°﹣60°=30°,∠ACB=90°﹣∠B=90°﹣60°=30°,
∴∠CAE=∠ACB,
∴AE=CE,
∴CE=BE,
∴S△ABC=12AB•AC=12×4×43=83,
∴S△ACE=12S△ABC=12×83=43,
∵∠CAE=30°,AE=4,
∴S扇形AEF=30π×AE2360=30π×42360=4π3,
∴S阴影=S△ACE﹣S扇形AEF=43-4π3.
23.(2020•菏泽)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.
(1)求证:DE⊥AC;
(2)若⊙O的半径为5,BC=16,求DE的长.
【分析】(1)连接AD、OD.先证明∠ADB=90°,∠EDO=90°,从而可证明∠EDA=∠ODB,由OD=OB可得到∠EDA=∠OBD,由等腰三角形的性质可知∠CAD=∠BAD,故此∠EAD+∠EDA=90°,由三角形的内角和定理可知∠DEA=90°,于是可得到DE⊥AC.
(2)由等腰三角形的性质求出BD=CD=8,由勾股定理求出AD的长,根据三角形的面积得出答案.
【解析】(1)证明:连接AD、OD.
∵AB是圆O的直径,
∴∠ADB=90°.
∴∠ADO+∠ODB=90°.
∵DE是圆O的切线,
∴OD⊥DE.
∴∠EDA+∠ADO=90°.
∴∠EDA=∠ODB.
∵OD=OB,
∴∠ODB=∠OBD.
∴∠EDA=∠OBD.
∵AC=AB,AD⊥BC,
∴∠CAD=∠BAD.
∵∠DBA+∠DAB=90°,
∴∠EAD+∠EDA=90°.
∴∠DEA=90°.
∴DE⊥AC.
(2)解:∵∠ADB=90°,AB=AC,
∴BD=CD,
∵⊙O的半径为5,BC=16,
∴AC=10,CD=8,
∴AD=AC2-CD2=102-82=6,
∵S△ADC=12AD⋅DC=12AC•DE,
∴DE=AD⋅DCAC=6×810=245.
24.(2020•天津)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.
(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;
(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.
【分析】(1)由三角形的外角性质得出∠C=37°,由圆周角定理得∠BAD=∠C=37°,∠ADC=∠B=63°,∠ADB=90°,即可得出答案;
(2)连接OD,求出∠PCB=27°,由切线的性质得出∠ODE=90°,由圆周角定理得出∠BOD=2∠PCB=54°,即可得出答案.
【解析】(1)∵∠APC是△PBC的一个外角,
∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,
由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠B=63°,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;
(2)连接OD,如图②所示:
∵CD⊥AB,
∴∠CPB=90°,
∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,
∵DE是⊙O的切线,
∴DE⊥OD,
∴∠ODE=90°,
∵∠BOD=2∠PCB=54°,
∴∠E=90°﹣∠BOD=90°﹣54°=36°.
25.(2020•凉山州)如图,⊙O的半径为R,其内接锐角三角形ABC中,∠A、∠B、∠C所对的边分别是a、b、c.
(1)求证:asin∠A=bsin∠B=csin∠C=2R;
(2)若∠A=60°,∠C=45°,BC=43,利用(1)的结论求AB的长和sin∠B的值.
【分析】(1)证明:作直径BE,连接CE,如图所示:则∠BCE=90°,∠E=∠A,根据三角函数的定义得到sinA=sinE=BCBE=a2R,求得asinA=2R,同理:bsin∠B=2R,csin∠C=2R,于是得到结论;
(2)由(1)得:ABsinC=BCsinA,得到AB=43×2232=42,2R=4332=8,过B作BH⊥AC于H,解直角三角形得到AC=AH+CH=2(2+6),根据三角函数的定义即可得到结论.
【解析】(1)证明:作直径BE,连接CE,如图所示:
则∠BCE=90°,∠E=∠A,
∴sinA=sinE=BCBE=a2R,
∴asinA=2R,
同理:bsin∠B=2R,csin∠C=2R,
∴asin∠A=bsin∠B=csin∠C=2R;
(2)解:由(1)得:ABsinC=BCsinA,
即ABsin45°=43sin60°=2R,
∴AB=43×2232=42,2R=4332=8,
过B作BH⊥AC于H,
∵∠AHB=∠BHC=90°,
∴AH=AB•