分享
专题22与圆的有关解答题-2020年中考数学真题分项汇编(学生版)【全国通用】【jiaoyupan.com教育盘】.docx
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
全国通用 jiaoyupan.com教育盘 专题 22 有关 解答 2020 年中 数学 真题分项 汇编 学生 全国 通用 jiaoyupan com 教育
2020年中考数学真题分项汇编(全国通用) 专题22与圆的有关解答题 一.解答题(共50小题) 1.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD. (1)求证:CD是⊙O的切线; (2)若AD=8,BECE=12,求CD的长. 2.(2020•温州)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AC上一点,∠ADC=∠G. (1)求证:∠1=∠2. (2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径. 3.(2020•衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点. (1)求证:∠CAD=∠CBA. (2)求OE的长. 4.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框: 证明:连结OC, ∵OA=OB, ∴∠A=∠B, 又∵OC=OC, ∴△OAC≌△OBC, ∴AC=BC. 小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程. 5.(2020•湖州)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD. (1)求证:∠CAD=∠ABC; (2)若AD=6,求CD的长. 6.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC于点D,过点D作DE∥BC交AC的延长线于点E. (1)求证:DE是⊙O的切线; (2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度. 7.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD. (1)求证:DC∥AP; (2)求AC的长. 8.(2020•聊城)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E. (1)试证明DE是⊙O的切线; (2)若⊙O的半径为5,AC=610,求此时DE的长. 9.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC于点D. (1)求证:∠BAC=2∠ABD; (2)当△BCD是等腰三角形时,求∠BCD的大小; (3)当AD=2,CD=3时,求边BC的长. 10.(2020•金华)如图,AB的半径OA=2,OC⊥AB于点C,∠AOC=60°. (1)求弦AB的长. (2)求AB的长. 11.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,AC=CD=DB,连接AD,过点D作DE⊥AC交AC的延长线于点E. (1)求证:DE是⊙O的切线. (2)若直径AB=6,求AD的长. 12.(2020•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H. (1)求证:∠C=∠AGD; (2)已知BC=6.CD=4,且CE=2AE,求EF的长. 13.(2020•河南)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长. 使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了. 为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程. 已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,   . 求证:   . 14.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E. (1)求证:△CBA≌△DAB; (2)若BE=BF,求证:AC平分∠DAB. 15.(2020•河南)小亮在学习中遇到这样一个问题: 如图,点D是BC上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度. 小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整: (1)根据点D在BC上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值. BD/cm 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 CD/cm 8.0 7.7 7.2 6.6 5.9 a 3.9 2.4 0 FD/cm 8.0 7.4 6.9 6.5 6.1 6.0 6.2 6.7 8.0 操作中发现: ①“当点D为BC的中点时,BD=5.0cm”.则上表中a的值是   ; ②“线段CF的长度无需测量即可得到”.请简要说明理由. (2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为yCD和yFD,并在平面直角坐标系xOy中画出了函数yFD的图象,如图所示.请在同一坐标系中画出函数yCD的图象; (3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数). 16.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H. (1)求证:直线DH是⊙O的切线; (2)若AB=10,BC=6,求AD,BH的长. 17.(2020•长沙)如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB. (1)求证:DC为⊙O的切线. (2)若AD=3,DC=3,求⊙O的半径. 18.(2020•襄阳)如图,AB是⊙O的直径,E,C是⊙O上两点,且EC=BC,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D. (1)判定直线CD与⊙O的位置关系,并说明理由; (2)若AB=4,CD=3,求图中阴影部分的面积. 19.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F. (1)判断BC与⊙O的位置关系,并说明理由; (2)若AD=8,AE=10,求BD的长. 20.(2020•淮安)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB. (1)判断直线BC与⊙O的位置关系,并说明理由; (2)若∠A=30°,OP=1,求图中阴影部分的面积. 21.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F. 求证:(1)四边形DBCF是平行四边形; (2)AF=EF. 22.(2020•辽阳)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE. (1)求证:DE与⊙A相切; (2)若∠ABC=60°,AB=4,求阴影部分的面积. 23.(2020•菏泽)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E. (1)求证:DE⊥AC; (2)若⊙O的半径为5,BC=16,求DE的长. 24.(2020•天津)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°. (Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小; (Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小. 25.(2020•凉山州)如图,⊙O的半径为R,其内接锐角三角形ABC中,∠A、∠B、∠C所对的边分别是a、b、c. (1)求证:asin∠A=bsin∠B=csin∠C=2R; (2)若∠A=60°,∠C=45°,BC=43,利用(1)的结论求AB的长和sin∠B的值. 26.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E. (1)求证:AE=AB; (2)若AB=10,BC=6,求CD的长. 27.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E. (1)求证:AD∥EC; (2)若AB=12,求线段EC的长. 28.(2020•天水)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F. (1)试判断直线BC与⊙O的位置关系,并说明理由; (2)若BD=23,AB=6,求阴影部分的面积(结果保留π). 29.(2020•内江)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE. (1)求证:BE是⊙O的切线; (2)设OE交⊙O于点F,若DF=2,BC=43,求线段EF的长; (3)在(2)的条件下,求阴影部分的面积. 30.(2020•武威)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB. (1)求∠ACB的度数; (2)若DE=2,求⊙O的半径. 31.(2020•福建)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是BCD上不与B,D重合的点,sinA=12. (1)求∠BED的大小; (2)若⊙O的半径为3,点F在AB的延长线上,且BF=33,求证:DF与⊙O相切. 32.(2020•扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC. (1)试判断AE与⊙O的位置关系,并说明理由; (2)若AC=6,求阴影部分的面积. 33.(2020•临沂)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以12O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C. (1)求证:BC是⊙O2的切线; (2)若r1=2,r2=1,O1O2=6,求阴影部分的面积. 34.(2020•山西)如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F.求∠C和∠E的度数. 35.(2020•广元)在Rt△ABC中,∠ACB=90°,OA平分∠BAC交BC于点O,以O为圆心,OC长为半径作圆交BC于点D. (1)如图1,求证:AB为⊙O的切线; (2)如图2,AB与⊙O相切于点E,连接CE交OA于点F. ①试判断线段OA与CE的关系,并说明理由. ②若OF:FC=1:2,OC=3,求tanB的值. 36.(2020•湘潭)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,垂足为点E. (1)求证:△ABD≌△ACD; (2)判断直线DE与⊙O的位置关系,并说明理由. 37.(2020•武汉)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E. (1)求证:AD平分∠BAE; (2)若CD=DE,求sin∠BAC的值. 38.(2020•随州)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,与BC交于点M,与AB的另一个交点为E,过M作MN⊥AB,垂足为N. (1)求证:MN是⊙O的切线; (2)若⊙O的直径为5,sinB=35,求ED的长. 39.(2020•江西)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r. (1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数; (2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由; (3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示). 40.(2020•北京)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1. 给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B′分别为点A,B的对应点),线段AA'长度的最小值称为线段AB到⊙O的“平移距离”. (1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是   ;在点P1,P2,P3,P4中,连接点A与点   的线段的长度等于线段AB到⊙O的“平移距离”; (2)若点A,B都在直线y=3x+23上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值; (3)若点A的坐标为(2,32),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围. 41.(2020•哈尔滨)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F. (1)如图1,求证:∠BFC=3∠CAD; (2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH; (3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为925,求线段CG的长. 42.(2020•咸宁)定义:有一组对角互余的四边形叫做对余四边形. 理解: (1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为   ; 证明: (2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D. 求证:四边形ABCD是对余四边形; 探究: (3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有有怎样的数量关系?写出猜想,并说明理由. 43.(2020•陕西)问题提出 (1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是   . 问题探究 (2)如图2,AB是半圆O的直径,AB=8.P是AB上一点,且PB=2PA,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长. 问题解决 (3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2). ①求y与x之间的函数关系式; ②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积. 44.(2020•北京)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F. (1)求证:∠ADC=∠AOF; (2)若sinC=13,BD=8,求EF的长. 45.(2020•凉山州)如图,AB是半圆AOB的直径,C是半圆上的一点,AD平分∠BAC交半圆于点D,过点D作DH⊥AC与AC的延长线交于点H. (1)求证:DH是半圆的切线; (2)若DH=25,sin∠BAC=53,求半圆的直径. 46.(2020•枣庄)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF. (1)求证:BF是⊙O的切线; (2)若⊙O的直径为4,CF=6,求tan∠CBF. 47.(2020•苏州)如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8. (1)求OP+OQ的值; (2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由. (3)求四边形OPCQ的面积. 48.(2020•乐山)如图1,AB是半圆O的直径,AC是一条弦,D是AC上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG. (1)求证:点D平分AC; (2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线. 49.(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F. (1)求证:AC是⊙O的切线; (2)若AB=10,tanB=43,求⊙O的半径; (3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由. 50.(2020•甘孜州)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D. (1)求证:∠CAD=∠CAB; (2)若ADAB=23,AC=26,求CD的长.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开