10.3解二元一次方程组一、教学目标:1.会用代入消元法解二元一次方程组;2.了解二元一次方程组的消元方法,经历从“二元”到“一元”的转换过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法.二、教学重点:用代入法解二元一次方程组.三、教学难点:用含有一个未知数的代数式表示另一个未知数.四、教学过程:1、新课引入——情景导入:根据篮球比赛规则:每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.如果某队为了争取较好名次,想在全部12场比赛中得20分,那么这个队胜、负场数应分别是多少?【学生活动】学生根据已有的经验可以通过列一元一次方程求解后,得出结论.解:设这个队胜x场,负了(12-x)场,根据题意,得:2x+(12-x)=20.解得,x=8.12-x=12-8=4.答:这个队胜8场,负了4场.【设计思路】(1)通过提出学生生活中的问题,引发学生思考,激发学生的求知欲;(2)学生根据已有的经验自然会列出一元一次方程去解,经历由问题到方程的模型,体会方程在解决实际问题中的作用与价值.2、实践探索:问题1:二元一次方程组与一元一次方程2x+(12-x)=20之间有何内在联系?(鼓励学生积极的投入到活动中,并留给学生足够的独立思考和自主探索的时间与空间.)问题2:从上面的二元一次方程组与一元一次方程的内在联系的讨论中,我们可以得到什么启发?【设计思路】(1)学生在教师的引导下自主地发现规律,让学生体会到一元一次方程与二元一次方程组之间的联系;(2)重视知识的发生过程,让学生了解代入消元法解二元一次方程组的过程及依据,体会由已知到未知,由陌生向熟悉转化这一重要思想——化归思想.3、归纳总结将未知数的个数由多化少、逐一解决的想法是消元思想,将方程组的一个方程中的某个未知数用另一个未知数的代数式表示,并代入另一个方程,消去一个未知数,从而把解二元一次方程组转化为解一元一次方程.这种解方程组的方法称为代入消元法,简称代入法4、例题讲解例1用代入法解方程组(课件出示)解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2.所以这个方程组的解是(课件出示.)例2用代入法解方程组(课件出示)教师引导学生思考:(1)从方程的结构来看,例2与例1有什么不同?(2)如何变形?(3)选择哪一个未知数表示另一个未知数?【提问】从上面的学习中,你认为代入法的基本思路是什么?主要步骤有哪些?与你的同伴交流(教师归纳并...