温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
九上数学浙教版
3.6
圆内接四边形
数学
浙教版
圆内接
四边形
3.6 圆内接四边形
1.习旧引新
⑴在⊙O上,任到三个点A、B、C然后顺次连接,得到的是什么图形?这个图形与⊙O有什么关系?
⑵由圆内接三角形的概念,能否得出什么叫圆的内接四边形呢(类比)?
2.概念学习
⑴什么叫圆的内接四边形?
⑵如图1,说明四边形ABCD与⊙O的关系.
3.探讨性质
⑴前面我们已经学习了一类特殊四边形——平行四边形,矩形,菱形,正方形,等腰梯形的性质,那么要探讨圆内接四边形的性质,一般要从哪几个方面入手?
⑵打开《几何画板》,让学生动手任意画⊙O和⊙O的内接四边形ABCD.
⑶量出可试题的所有值(圆的半径和四边形的边,内角,对角线,周长,面积),并观察这些量之间的关系.
⑷ 改变圆的半径大小,这些量有无变化?由(3)观察得出的某些关系有无变化?
⑸移动四边形的一个顶点,这些量有无变化?由(3)观察得出的某些关系有无变化?移动四边形的四个顶点呢?移动三个顶点呢?
⑹如何用命题的形式表述刚才的实验得出来的结论呢?(让学生回答)
4.性质的证明及巩固练习
⑴证明猜想
已知:如图1,四边形ABCD内接于⊙O.求证:∠BAD+∠BCD=180°,∠ABC+∠ADC=180° ⑵完善性质
①若将线段BC延长到E( 如图 2),那么,∠DCE与∠BAD又有什么关系呢?
②圆的内接四边形的性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.
⑶练习
①已知:在圆内接四边形ABCD中,已知∠A=50°,∠D-∠B=40°,求∠B,∠C,∠D的度数.
②已知:如图3,以等腰 △ABC的底边BC为直径的⊙O分别交两腰AB,AC于点E,D,连结DE,
求证:DE∥BC.(演示作业本)
5.例题讲解
引例已知:如图4,AD是△ABC中∠BAC的平分线,它与△ABC的外接圆交于点D.
求证:DB=DC.( 引例由学生证明并板演 )
教师先评价学生的板演,然后提出,若将已知中的“AD是△ABC中的∠BAC的平分线”改为“AD是△ABC的外角∠EAC的平分线”,又该如何证明?引出例题.
例已知:如图5,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,
求证DB=DC
6.小结
⑴本节课我们学习了圆内接四边形的概念和圆内接四边形的和要性质,要求同学们理解圆内接四边形和四边形的外接圆的概念,理解圆内接四边形的性质定理;并初步应用性质定理进行有关命题的证明和计算.
⑵在导出圆内接四边形性质的过程中,用到了许多数学方法(实验,观察,类比,分析,归纳,猜想等),同学们要逐步学会用并关于应用这些方法去探讨有关的数学问题,提高我们的数学实践能力与创新能力.