1.3
探索
三角形
全等
条件
SSS
1.3探索三角形全等的条件(4),1.什么叫全等三角形?,能够重合的两个三角形叫全等三角形.,3.已知ABC DEF,找出其中相等的边与角.,AB=DE,CA=FD,BC=EF,A=D,B=E,C=F,2.全等三角形有什么性质?,全等三角形的对应边相等,对应角相等.,导入新课,如果只满足这些条件中的一部分,那么能保证ABCDEF吗?,想一想:,即:三条边分别相等,三个角分别相等的两个三角形全等,探究活动1:一个条件可以吗?,(1)有一条边相等的两个三角形,不一定全等,(2)有一个角相等的两个三角形,不一定全等,结论:,有一个条件相等不能保证两个三角形全等.,三角形全等的判定(“边边边”),讲授新课,有两个条件对应相等不能保证三角形全等.,不一定全等,探究活动2:两个条件可以吗?,不一定全等,不一定全等,结论:,(1)有两个角对应相等的两个三角形,(2)有两条边对应相等的两个三角形,(3)有一个角和一条边对应相等的两个三角形,结论:三个内角对应相等的三角形不一定全等.,(1)有三个角对应相等的两个三角形,探究活动3:三个条件可以吗?,(2)三边对应相等的两个三角形会全等吗?,先任意画出一个ABC,再画出一个ABC,使AB=AB,BC=BC,A C=AC.把画好的ABC剪下,放到ABC上,他们全等吗?,A,B,C,想一想:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?,作法:(1)画BC=BC;(2)分别以B,C为圆心,线段AB,AC长为半径画圆,两弧相交于点A;(3)连接线段AB,A C.,动手试一试,文字语言:三边分别相等的两个三角形全等.(简写为“边边边”或“SSS”),“边边边”判定方法,在ABC和 DEF中,,ABC DEF(SSS).,几何语言:,例1 如图,有一个三角形钢架,AB=AC,AD 是连接点A 与BC 中点D 的支架是说明:(1)ABD ACD,解题思路:,先找隐含条件,公共边AD,再找现有条件,AB=AC,最后找准备条件,BD=CD,D是BC的中点,证明:D 是BC中点,BD=DC 在ABD 与ACD 中,,ABD ACD(SSS),准备条件,指明范围,摆齐根据,写出结论,(2)BAD=CAD.,由(1)得ABDACD,BAD=CAD.(全等三角形对应角相等),如图,C是BF的中点,AB=DC,AC=DF.试说明:ABC DCF.,在ABC 和DCF中,,AB=DC,,ABC DCF,(已知),(已证),AC=DF,,BC=CF,,解:C是BF中点,,BC=CF.,