分享
6.3 三角形的中位线.docx
下载文档

ID:3189063

大小:165.65KB

页数:3页

格式:DOCX

时间:2024-01-30

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
6.3 三角形的中位线 三角形 中位线
6. 3 三角形的中位线 教学目标 【知识与能力】 1.知道三角形中位线的概念,明确三角形中位线与中线的不同. 2.理解三角形中位线定理,并能运用它进行有关的论证和计算. 【过程与方法】 引导学生通过观察.实验.联想来发现三角形中位线的性质,培养学生观察问题.分析问题和解决问题的能力. 【情感态度价值观】 创设问题情景,激发学生的热情和兴趣,激活学生思维. 教学重难点 【教学重点】 三角形中位线定理. 【教学难点】 三角形中位线定理的灵活应用. 教学过程 一.情景导入,初步认知 怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形? 操作:(1)剪一个三角形,记为△ABC; (2)分别取AB,AC中点D,E,连接DE; (3) 沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD. 【教学说明】通过一个有趣的动手操作问题入手,激发学生学习兴趣.为后面中位线的证明做准备. 二.思考探究,获取新知 1.思考:四边形ABCD是平行四边形吗?你能证明吗? 2.探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位置和数量关系呢? 【教学说明】激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣. 【归纳结论】1.连接三角形两边中点的线段叫三角形的中位线; 2.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半. 三.运用新知,深化理解 1.如图所示,DE是△ABC的中位线,BC=8,则DE=______. 答案:4. 2.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,则AD的长为( ). A.3cm B. 6cm C.9cm D.12cm 答案:B. 3.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF. 证明:∵四边形ABCD是平行四边形, ∴ABCD,AD=BC. ∵CE=CD,∴ABCE, ∴四边形ABEC为平行四边形. ∴BF=FC,∴OFAB,即AB=2OF. 4.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF交于点M,连接CF,DE交于点N,求证:MN∥AD且MN=AD. 证明:∵四边形ABCD是平行四边形, ∴AB∥CD,AD∥BC. 又∵EF∥AB,∴EF∥CD. ∴四边形ABEF,ECDF均为平行四边形. 又∵M,N分别为□ABEF和□ECDF对角线的交点. ∴M为AE的中点,N为DE的中点,即MN为△AED的中位线. ∴MN∥AD且MN=AD. 5.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,则四边形EFGH是平行四边形吗?为什么? 解:EFGH是平行四边形,连接AC 在△ABC中,∵EF是中位线, ∴EFAC.同理,GHAC ∴EFGH. ∴四边形EFGH为平行四边形 【教学说明】巩固三角形中位线定理,同时也兼顾平行四边形判定定理的熟练运用. 四.师生互动,课堂小结 1.了解三角形中位线的概念; 2.探索并掌握三角形中位线的性质,并能应用其性质求有关问题. 五.教学板书 六.课后作业 布置作业:教材“习题6.6”中第1、2、3 题. 七.教学反思 本节课以探究三角形中位线的性质及证明为主线,开展教学活动.在三角形中位线定理探究过程中,学生先是通过动手画图、观察、测量、猜想出三角形中位线的性质,然后师生利用几何画板的测量和动态演示功能验证猜想的正确性,再引导学生尝试构造平行四边形进行证明.通过知识的形成过程,使学生体会探究数学问题的基本方法;通过定理的探究与证明,努力培养学生分析问题和解决问题的能力,提升学生数学的思维品质. - 3 -

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开