温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
21.5
第3课时
反比例函数的应用2
课时
反比例
函数
应用
优秀领先 飞翔梦想
21.5 反比例函数
第3课时 反比例函数的应用
教学课题:反比例函数的应用
教学目标:1、能灵活列反比例函数表达式解决一些实际问题.
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题.
教学重点:利用反比例函数的知识分析、解决实际问题。
教学难点:分析实际问题中的数量关系,正确写出函数解析式。
教学准备:1、解析式的一般形式。
2、反比例函数的图象和性质。
教学过程:
一、探究研讨
【活动1】问题:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?
(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?
(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
【活动2】码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载宪毕恰好用了8天时间.
(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?
(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?
二、巩固练习:1、P54-1、2
2、京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为
3、完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式
4、一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,=1.43,(1)求与V的函数关系式;(2)求当V=2时氧气的密度
5、已知某矩形的面积为20cm2
(1)写出其长y与宽x之间的函数表达式。
(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?
(3)如果要求矩形的长不小于8cm,其宽至多要多少?
三、提升能力:新课标第一网
1、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
2、学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天
(1)则y与x之间有怎样的函数关系?
(2)画函数图象
(3)若每天节约0.1吨,则这批煤能维持多少天?
四、反思归纳
1、本节课教学的内容:
2、数学思想方法归纳:
教学课题:1.3 实际问题与反比例函数(2)
教学目标:1、能灵活列反比例函数表达式解决一些实际问题.
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题.
教学重点:利用反比例函数的知识分析、解决实际问题。
教学难点:分析实际问题中的数量关系,正确写出函数解析式。
教学过程:
一、 探究研讨:
【活动1】“给我一个支点,我就能撬起地球”这是谁说的话。
用图示描述杠杆定律
问题:小伟欲用撬棍撬起一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米。
(1) 动力F和动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?
(2) 若想使动力F不超过题(1)中所有力的一半,则动力臂至少要加长多少?
【活动2】电学知识告诉我们,用电器的输出功率P(瓦)、两端的电压U(伏)及用电器的电阻R(欧姆)有如下关系:PR=U2。这个关系也可写为P= ,或R= 。
问题:一个用电器的电阻是可调节的,其范围为110~220欧姆,已知电压为220伏,这个用电器的电路图如上图所示。
(1)输出功率P与电阻R有怎样的函数关系?
(2)用电器输出功率的范围多大?
二、巩固练习:1、P54-3
2、在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.
(1)求I与R之间的函数关系式;
(2)当电流I=0.5时,求电阻R的值.
3、小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v(米/分),所需时间为t(分)
(1)则速度v与时间t之间有怎样的函数关系?
(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?
(2)如果小林骑车的速度最快为300米/分,那他至少需要几分钟到达单位?
三、提升能力:1、某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x元与日销售量y之间有如下关系:
x(元)
3
4
5
6
y(个)
20
15
12
10
(1)根据表中的数据在平面直角坐标系中描出实数对(x,y)的对应点;
(2)猜测并确定y与x之间的函数关系式,并画出图象;
(3)设经营此贺卡的销售利润为W元,试求出w与x之间的函数关系式,若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?
四、反思归纳
1、本节课教学的内容:
2、数学思想方法归纳:
第 5 页 共 5 页