温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2.3
不等式的解集
不等式
2.3不等式的解集
教学目标
【知识与能力】
1.能根据具体情境理解不等式的解与解集的意义.
2.能在数轴上表示不等式的解集.
【过程与方法】
培养学生从现实情况中探索、发现并提出简单的数学问题的能力.
【情感态度价值观】
通过从实际问题中建立数学模型、探索求不等式的解集的过程,让学生认识数学与人类生活的密切联系,体验数学的探究性和创造性.
教学重难点
【教学重点】
理解不等式的解与解集的概念.
【教学难点】
不等式解集的数轴表示.
教学过程
一.情景导入,初步认知
1.我们已学习了不等式的基本性质,那么不等式的基本性质有哪些?它与等式的性质有何异同点?
2.方程的解的定义是什么?
3.类似地,你认为什么是不等式的解?这节课我们来研究不等式的解的相关知识.
【教学说明】让学生回顾前一节及相关内容,为本节课教学做好知识准备,起到承上启下的作用.
二.思考探究,获取新知
探究1:不等式的解、解集的概念
1.x=-2、1、5、6、8能使不等式x>5成立么?
2.你还能说出几个使不等式x>5成立的x值吗?你认为不等式x>5的解有几个?它们有什么特点?
3.你能说出使不等式x2≤0成立的x值吗?
【归纳结论】能使不等式成立的未知数的值,叫做不等式的解.一个含有未知数的不等式的所有解,组成这个不等式的解集,求不等式的解集的过程叫做解不等式.
【教学说明】通过对以上问题情境的探究,引导学生认识到:不等式的解一般有无数个,但有时只有有限个,有时无解.在此基础上,给出不等式的解集和解不等式的定义.
探究2:在数轴上表示不等式的解集.
1.讨论:既然不等式的解集在通常情形下有很多个符合条件的解,那么我们能否用一种直观的方法把不等式的解集表示出来呢?请同学们相互交流,发表自己的见解.
2.请同学们用自己的方式将不等式x>3的解集和不等式x+1≤-1的解集x≤-2分别表示在数轴上,并与同伴进行交流.
【教学说明】学习在数轴上表示不等式解集时,先鼓励学生用自己的方法表示,以发展他们的创新意识.
【归纳结论】提醒学生注意数轴上表示不等式的解集的正确方法:
(1)指示线的方向,“>”向右,“<”向左.
(2)有“=”用实心点,没有“=”用空心圈.
三.运用新知,深化理解
1.判断正误:(1)不等式x-1>0有无数个解;
(2)不等式2x-3≤0的解集为x≥ .
答案:(1)对;(2)错.
2.填空:
(1)方程2x=4的解有( )个,不等式2x<4的解有( )个;
(2)不等式5x≥-10的解集是( );
(3)不等式x≥-3的负整数解是( );
(4)不等式x-1<2的正整数解是( ).
答案:(1)1 无数;(2)x≥-2;(3)-3、-2、-1;(4)1、2.
3.将数轴上x的范围用不等式表示:
(5)x应取大于-2且小于1的值或x等于-2.此不等式的解集在数轴上的表示为:答案:
(1)x>2;(2)x≤3;(3)x≥-1;(4)x<1;(5)-2≤x<1.
4.下列说法中,错误的是( )
A.不等式x<2的正整数解有一个
B.-2是不等式2x-1<0的一个解
C.不等式-3x>9的解集是x>-3
D.不等式x<10的整数解有无数个
解析:A.不等式x<2的正整数解只有1,故本选项正确,不符合题意;
B.2x-1<0的解集为x<12,所以-2是不等式2x-1<0的一个解,故本选项正确,不符合题意;
C.不等式-3x>9的解集是x<-3,故本选项错误,符合题意;
D.不等式x<10的整数解有无数个,故本选项正确,不符合题意.故选C.
【教学说明】通过自主练习,巩固本节课所学知识.教师可适当引导学生.
四.师生互动,课堂小结
1.什么是不等式的解,不等式的解集,解不等式;
2.会探索简单不等式的解集,并把解集表示在数轴上;
3.用数轴表示解集时的注意事项.
五.教学板书
六.课后作业
布置作业:教材“习题2.3”中第2、3题.
七.教学反思
在教学中要充分体现学生的积极参与和合作交流.让学生掌握采用类比方程的解得到不等式的解的方法,进一步深入了解问题,积极参与交流探索,并通过老师的引导,理解不等式的解和解集的意义.在学生自主练习、小组展示和交流质疑的过程中,老师能及时发现学生的不同见解,并对学生的思维误区及时进行指导纠正.
- 3 -