分享
1.1 反比例函数.doc
下载文档

ID:3187847

大小:142KB

页数:2页

格式:DOC

时间:2024-01-30

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
1.1 反比例函数 反比例 函数
1.1 反比例函数 教学目标 1.使学生理解并掌握反比例函数的概念。 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。 教学重难点 【教学重点】 理解反比例函数的概念,能根据已知条件写出函数解析式。 【教学难点】 理解反比例函数的概念。 课前准备 无 教学过程 一、 创设情景 探究问题 情境1:随着速度的变化,全程所用时间发生怎样的变化? 当路程一定时,速度与时间成什么关系?(s=vt) 当一个长方形面积一定时,长与宽成什么关系? [说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。 这一情境为后面学习反比例函数概念作铺垫。 情境2: 汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化. 问题: (1)你能用含有v的代数式表示t吗? (2)利用(1)的关系式完成下表: v/(km/h) 60 80 90 100 120 t/h (3)速度v是时间t的函数吗?为什么? 情境3: 用函数关系式表示下列问题中两个变量之间的关系: (1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化; (2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化; (3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化; (4)实数m与n的积为-200,m随n的变化而变化. 问题: (1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同? (2)它们有一些什么特征? (3)你能归纳出反比例函数的概念吗? 一般地,形如y=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数. 反比例函数的自变量x的取值范围是不等于0的一切实数 二、例题教学 例1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少? (1)y=;(2)y=;(3)y=- ;(4)y=-3;(5)y=;(6)y=+2;(7)y=. 例2:在函数y=-1,y=,y=x-1,y=中,y是x的反比例函数的有  个. [说明]这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式. 还有y=-1通分为y=,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=可说成(y+1)与x成反比例. 例3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为      . [说明]这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数. 三、拓展练习 1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值. (1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化; (2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化; (3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化. 2、下列哪些关系式中的y是x的反比例函数?如果是,比例系数是多少? (1)y=x; (2)y=; (3)xy+2=0; (4)xy=0;  (5)x=. 3、已知函数y=(m+1)x是反比例函数,则m的值为    . 四、课堂小结 这节课你学到了什么?还有那些困惑? 五、布置作业: 2

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开