分享
第21讲 圆的基本性质.doc
下载文档

ID:3185591

大小:1.29MB

页数:2页

格式:DOC

时间:2024-01-29

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
第21讲 圆的基本性质 21 基本 性质
优秀领先 飞翔梦想 成人成才 第六单元 圆 第21讲 圆的基本性质 一、 知识清单梳理 知识点一:圆的有关概念 关键点拨与对应举例 1.与圆有关的概念和性质 (1)圆:平面上到定点的距离等于定长的所有点组成 的图形.如图所示的圆记做⊙O. (2)弦与直径:连接圆上任意两点的线段叫做弦,过 圆心的弦叫做直径,直径是圆内最长的弦. (3)弧:圆上任意两点间的部分叫做弧,小于半圆的 弧叫做劣弧,大于半圆的弧叫做优弧. (4)圆心角:顶点在圆心的角叫做圆心角. (5)圆周角:顶点在圆上,并且两边都与圆还有一个 交点的角叫做圆周角. (6)弦心距:圆心到弦的距离. (1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条; (2)3点确定一个圆,经过1点或2点的圆有无数个. (3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆. 知识点二 :垂径定理及其推论 2.垂径定理及其推论 定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形. 推论 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧. 延伸 根据圆的对称性,如图所示,在以下五条结论中: ① 弧AC=弧BC; ②弧AD=弧BD; ③AE=BE; ④AB⊥CD;⑤CD是直径. 只要满足其中两个,另外三个结论一定成立,即推二知三. 知识点三 :圆心角、弧、弦的关系 3.圆心角、弧、弦的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等. 圆心角、弧和弦之间的等量关系必须在同圆等式中才成立. 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等. 知识点四 :圆周角定理及其推论 4.圆周角定理及其推论 (1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a, ∠A=1/2∠O. 图a 图b 图c ( 2 )推论: ① 在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b,∠A=∠C. ② 直径所对的圆周角是直角.如图c,∠C=90°. ③ 圆内接四边形的对角互补.如图a,∠A+∠C=180°,∠ABC+∠ADC=180°. 在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等. 例:如图,AB是⊙O的直径,C,D是⊙O上两点,∠BAC=40°,则∠D的度数为130°. 第 2 页 共 2 页

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开