分享
2019年江苏省泰州市中考数学试卷.doc
下载文档

ID:3180914

大小:2.76MB

页数:22页

格式:DOC

时间:2024-01-29

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2019 江苏省 泰州市 中考 数学试卷
2019年江苏省泰州市中考数学试卷 一、选择题(本大题共有6小题,每小题3分,共18分,在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.(3分)(2019•泰州)的相反数是   A. B. C.0 D.1 2.(3分)(2019•泰州)如图图形中的轴对称图形是   A. B. C. D. 3.(3分)(2019•泰州)方程的两根为、,则等于   A. B.6 C. D.3 4.(3分)(2019•泰州)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表: 抛掷次数 100 200 300 400 500 正面朝上的频数 53 98 156 202 244 若抛掷硬币的次数为1000,则“正面朝上”的频数最接近   A.20 B.300 C.500 D.800 5.(3分)(2019•泰州)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是   A.点 B.点 C.点 D.点 6.(3分)(2019•泰州)若,则代数式的值为   A. B.1 C.2 D.3 二、填空题(本大题共有10小题,每小题3分,共30分,请把答直接填写在答题卡相应位置上) 7.(3分)(2019•泰州)计算:  . 8.(3分)(2019•泰州)若分式有意义,则的取值范围是   . 9.(3分)(2019•泰州)2019年5月28日,我国“科学”号远洋科考船在最深约为的马里亚纳海沟南侧发现了近10片珊瑚林.将11000用科学记数法表示为  . 10.(3分)(2019•泰州)不等式组的解集为  . 11.(3分)(2019•泰州)八边形的内角和为   . 12.(3分)(2019•泰州)命题“三角形的三个内角中至少有两个锐角”是  (填“真命题”或“假命题” . 13.(3分)(2019•泰州)根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为  万元. 14.(3分)(2019•泰州)若关于的方程有两个不相等的实数根,则的取值范围是  . 15.(3分)(2019•泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为,则该莱洛三角形的周长为  . 16.(3分)(2019•泰州)如图,的半径为5,点在上,点在内,且,过点作的垂线交于点、.设,,则与的函数表达式为  . 三、解答题(本大题共有10题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(12分)(2019•泰州)(1)计算:; (2)解方程:. 18.(8分)(2019•泰州)是指空气中直径小于或等于的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题, 2017年、2018年月全国338个地级及以上市平均浓度统计表 (单位: 月份 年份 7 8 9 10 11 12 2017年 27 24 30 38 51 65 2018年 23 24 25 36 49 53 (1)2018年月平均浓度的中位数为  ; (2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年月平均浓度变化过程和趋势的统计图是  ; (3)某同学观察统计表后说:“2018年月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由. 19.(8分)(2019•泰州)小明代表学校参加“我和我的祖国”主题宣传教育活动.该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用、、表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用、表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中、两个项目的概率. 20.(8分)(2019•泰州)如图,中,,,. (1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交于点,求的长. 21.(10分)(2019•泰州)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求: (1)观众区的水平宽度; (2)顶棚的处离地面的高度.,,结果精确到 22.(10分)(2019•泰州)如图,在平面直角坐标系中,二次函数图象的顶点坐标为,该图象与轴相交于点、,与轴相交于点,其中点的横坐标为1. (1)求该二次函数的表达式; (2)求. 23.(10分)(2019•泰州)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于,超过时,所有这种水果的批发单价均为3元.图中折线表示批发单价(元与质量的函数关系. (1)求图中线段所在直线的函数表达式; (2)小李用800元一次可以批发这种水果的质量是多少? 24.(10分)(2019•泰州)如图,四边形内接于,为的直径,为的中点,过点作,交的延长线于点. (1)判断与的位置关系,并说明理由; (2)若的半径为5,,求的长. 25.(12分)(2019•泰州)如图,线段,射线,为射线上一点,以为边作正方形,且点、与点在两侧,在线段上取一点,使,直线与线段相交于点(点与点、不重合). (1)求证:; (2)判断与的位置关系,并说明理由; (3)求的周长. 26.(14分)(2019•泰州)已知一次函数和反比例函数. (1)如图1,若,且函数、的图象都经过点. ①求,的值; ②直接写出当时的范围; (2)如图2,过点作轴的平行线与函数的图象相交于点,与反比例函数的图象相交于点. ①若,直线与函数的图象相交点.当点、、中的一点到另外两点的距离相等时,求的值; ②过点作轴的平行线与函数的图象相交与点.当的值取不大于1的任意实数时,点、间的距离与点、间的距离之和始终是一个定值.求此时的值及定值. 2019年江苏省泰州市中考数学试卷 参考答案与试题解析 一、选择题(本大题共有6小题,每小题3分,共18分,在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.(3分)的相反数是   A. B. C.0 D.1 【分析】直接利用相反数的定义分析得出答案. 【解答】解:的相反数是:1. 故选:. 2.(3分)如图图形中的轴对称图形是   A. B. C. D. 【分析】根据轴对称图形的概念判断即可. 【解答】解:、不是轴对称图形; 、是轴对称图形; 、不是轴对称图形; 、不是轴对称图形; 故选:. 3.(3分)方程的两根为、,则等于   A. B.6 C. D.3 【分析】根据根与系数的关系即可求出答案. 【解答】解:由于△, , 故选:. 4.(3分)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表: 抛掷次数 100 200 300 400 500 正面朝上的频数 53 98 156 202 244 若抛掷硬币的次数为1000,则“正面朝上”的频数最接近   A.20 B.300 C.500 D.800 【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可. 【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近, 所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近次, 故选:. 5.(3分)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是   A.点 B.点 C.点 D.点 【分析】根据三角形三条中线相交于一点,这一点叫做它的重心,据此解答即可. 【解答】解:根据题意可知,直线经过的边上的中线,直线经过的边上的中线, 点是重心. 故选:. 6.(3分)若,则代数式的值为   A. B.1 C.2 D.3 【分析】将代数式变形后,整体代入可得结论. 【解答】解:, , , , , 故选:. 二、填空题(本大题共有10小题,每小题3分,共30分,请把答直接填写在答题卡相应位置上) 7.(3分)计算: 1 . 【分析】根据零指数幂意义的即可求出答案. 【解答】解:原式, 故答案为:1 8.(3分)若分式有意义,则的取值范围是  . 【分析】根据分母不等于0列式计算即可得解. 【解答】解:根据题意得,, 解得. 故答案为:. 9.(3分)2019年5月28日,我国“科学”号远洋科考船在最深约为的马里亚纳海沟南侧发现了近10片珊瑚林.将11000用科学记数法表示为  . 【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数. 【解答】解:将11000用科学记数法表示为:. 故答案为:. 10.(3分)不等式组的解集为 . . 【分析】求出不等式组的解集即可. 【解答】解:等式组的解集为, 故答案为:. 11.(3分)八边形的内角和为  . 【分析】根据多边形的内角和公式进行计算即可得解. 【解答】解:. 故答案为:. 12.(3分)命题“三角形的三个内角中至少有两个锐角”是 真命题 (填“真命题”或“假命题” . 【分析】根据三角形内角和定理判断即可. 【解答】解:三角形的三个内角中至少有两个锐角,是真命题; 故答案为:真命题 13.(3分)根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为 5000 万元. 【分析】用二季度的营业额二季度所占的百分比即可得到结论. 【解答】解:该商场全年的营业额为万元, 答:该商场全年的营业额为 5000万元, 故答案为:5000. 14.(3分)若关于的方程有两个不相等的实数根,则的取值范围是  . 【分析】利用判别式的意义得到△,然后解关于的不等式即可. 【解答】解:根据题意得△, 解得. 故答案为. 15.(3分)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为,则该莱洛三角形的周长为  . 【分析】直接利用弧长公式计算即可. 【解答】解:该莱洛三角形的周长. 故答案为. 16.(3分)如图,的半径为5,点在上,点在内,且,过点作的垂线交于点、.设,,则与的函数表达式为  . 【分析】连接并延长交于,连接,根据圆周角定理得到,,求得,根据相似三角形的性质即可得到结论. 【解答】解:连接并延长交于,连接, 则,, , , , , , 的半径为5,,,, , , 故答案为:. 三、解答题(本大题共有10题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(12分)(1)计算:; (2)解方程:. 【分析】(1)利用二次根式的乘法法则运算; (2)先去分母得到整式方程,再解整式方程,然后进行检验确定原方程的解. 【解答】解:(1)原式 ; (2)去分母得, 解得, 检验:当时,,为原方程的解. 所以原方程的解为. 18.(8分)是指空气中直径小于或等于的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题, 2017年、2018年月全国338个地级及以上市平均浓度统计表 (单位: 月份 年份 7 8 9 10 11 12 2017年 27 24 30 38 51 65 2018年 23 24 25 36 49 53 (1)2018年月平均浓度的中位数为  ; (2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年月平均浓度变化过程和趋势的统计图是  ; (3)某同学观察统计表后说:“2018年月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由. 【分析】(1)根据中位数的定义解答即可; (2)根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况; (3)观察统计表,根据统计表中的数据特点解答即可. 【解答】解:(1)2018年月平均浓度的中位数为; 故答案为:; (2)可以直观地反映出数据变化的趋势的统计图是折线统计图, 故答案为:折线统计图; (3)2018年月与2017年同期相比平均浓度下降了. 19.(8分)小明代表学校参加“我和我的祖国”主题宣传教育活动.该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用、、表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用、表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中、两个项目的概率. 【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得. 【解答】解:画树状图如下 由树状图知共有6种等可能结果,其中小明恰好抽中、两个项目的只有1种情况, 所以小明恰好抽中、两个项目的概率为. 20.(8分)如图,中,,,. (1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交于点,求的长. 【分析】(1)分别以,为圆心,大于为半径画弧,两弧交于点,,作直线即可. (2)设,在中,利用勾股定理构建方程即可解决问题. 【解答】解:(1)如图直线即为所求. (2)垂直平分线段, ,设, 在中,, , 解得, . 21.(10分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求: (1)观众区的水平宽度; (2)顶棚的处离地面的高度.,,结果精确到 【分析】(1)根据坡度的概念计算; (2)作于,于,根据正切的定义求出,结合图形计算即可. 【解答】解:(1)观众区的坡度为,顶端离水平地面的高度为, , 答:观众区的水平宽度为; (2)作于,于, 则四边形、为矩形, ,,, 在中,, 则, , 答:顶棚的处离地面的高度约为. 22.(10分)如图,在平面直角坐标系中,二次函数图象的顶点坐标为,该图象与轴相交于点、,与轴相交于点,其中点的横坐标为1. (1)求该二次函数的表达式; (2)求. 【分析】(1)由题意可设抛物线解析式为:,将代入解析式来求的值. (2)由锐角三角函数定义解答. 【解答】解:(1)由题意可设抛物线解析式为:,. 把代入,得, 解得. 故该二次函数解析式为; (2)令,则.则. 因为二次函数图象的顶点坐标为,,则点与点关系直线对称, 所以. 所以. 所以,即. 23.(10分)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于,超过时,所有这种水果的批发单价均为3元.图中折线表示批发单价(元与质量的函数关系. (1)求图中线段所在直线的函数表达式; (2)小李用800元一次可以批发这种水果的质量是多少? 【分析】(1)设线段所在直线的函数表达式为,运用待定系数法即可求解; (2)根据“总价单价数量”解答即可. 【解答】解:(1)设线段所在直线的函数表达式为,根据题意得 ,解得, 线段所在直线的函数表达式为; (2)(千克). 答:小李用800元一次可以批发这种水果的质量是千克. 24.(10分)如图,四边形内接于,为的直径,为的中点,过点作,交的延长线于点. (1)判断与的位置关系,并说明理由; (2)若的半径为5,,求的长. 【分析】(1)连接,由为的直径,得到,根据,得到,根据平行线的性质得到,求得,于是得到结论; (2)根据勾股定理得到,由圆周角定理得到,求得,根据相似三角形的性质即可得到结论. 【解答】解:(1)与相切, 理由:连接, 为的直径, , 为的中点, , , , 是的中点, , , , , 与相切; (2)的半径为5, , , 为的直径, , , , , , , , , . 25.(12分)如图,线段,射线,为射线上一点,以为边作正方形,且点、与点在两侧,在线段上取一点,使,直线与线段相交于点(点与点、不重合). (1)求证:; (2)判断与的位置关系,并说明理由; (3)求的周长. 【分析】(1)四边形正方形,则平分,,,即可求解; (2),则,而,则,又,则即可求解; (3)证明,则,,即可求解. 【解答】解:(1)证明:四边形正方形, 平分,, , ; (2),理由如下: , , , , ,, , , ; (3)过点 作. ,, , , 又, , ,, , , . 26.(14分)已知一次函数和反比例函数. (1)如图1,若,且函数、的图象都经过点. ①求,的值; ②直接写出当时的范围; (2)如图2,过点作轴的平行线与函数的图象相交于点,与反比例函数的图象相交于点. ①若,直线与函数的图象相交点.当点、、中的一点到另外两点的距离相等时,求的值; ②过点作轴的平行线与函数的图象相交与点.当的值取不大于1的任意实数时,点、间的距离与点、间的距离之和始终是一个定值.求此时的值及定值. 【分析】(1)①将点的坐标代入一次函数表达式并解得:,将点的坐标代入反比例函数表达式,即可求解;②由图象可以直接看出; (2)①,,由得:,即可求解;②点的坐标为,,,即可求解. 【解答】解:(1)①将点的坐标代入一次函数表达式并解得:, 将点的坐标代入反比例函数得:; ②由图象可以看出时,; (2)①当时,点、、的坐标分别为、、, 则,, 由得:, 即:; ②点的坐标为,, , 当时,为定值, 此时,. 第22页(共22页)

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开