分享
湖北恩施-扫描真题.doc
下载文档

ID:3180753

大小:5.11MB

页数:14页

格式:DOC

时间:2024-01-29

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
湖北 恩施 扫描
湖北恩施州数学--2020年初中毕业升学学业水平考试题(图片版) 答案 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将选项前的字母代号填涂在答题卷相应位置上. 1.A. 2.B. 3.D. 4.B.5.B. 6.D. 7.C. 8.A. 9.A. 10.D. 11.B. 12.C. 二、填空题:不要求写出解答过程,请把答案直接写在答题卷相应位置上. 13.3. 14. 15. 16.(-1,8) 三、解答题:请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 17., 【详解】 ; 当时,原式. 18.【详解】证明:∵, ∴∠ADB=∠DBC, 又BD平分∠ABC, ∴∠DBC=∠ABD, ∴∠ADB=∠ABD, ∴△ABD为等腰三角形, ∴AB=AD, 又已知AB=BC, ∴AD=BC, 又,即ADBC, ∴四边形ABCD为平行四边形, 又AB=AD, ∴四边形ABCD为菱形. 【点睛】本题考了角平分线性质,平行线的性质,菱形的判定方法,平行四边形的判定方法等,熟练掌握其判定方法及性质是解决此类题的关键. 19.(1)50名;(2)条形图见解析;(3);(4)150名. 【详解】(1)本次共调查的学生数为:名; (2)C类学生人数为:50-15-20-5=10名,条形图如下: (3)D类所对应扇形的圆心角为:; (4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:名. 20.【答案】此时船与小岛的距离约为44海里 【详解】如图,过P作PH⊥AB,设PH=x, 由题意,AB=60,∠PBH=30º,∠PAH=45º, 在Rt△PHA中,AH=PH=x, 在Rt△PBH中,BH=AB-AH=60-x,PB=2x, ∴tan30º=, 即, 解得:, ∴PB=2x=≈44(海里), 答:此时船与小岛的距离约为44海里. 【点睛】本题考查了直角三角形的应用,掌握方向角的概念和解直角三角形的知识是解答本题的关键. 21.(1) (3,0);(2) , 【详解】解:(1)由题意得:令中, 即,解得, ∴点A的坐标为(3,0), 故答案为(3,0) . (2) 过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示: 显然,CMOA,∴∠BCM=∠BAO,且∠ABO=∠CBO, ∴△BCM∽△BAO, ∴,代入数据: 即:,∴=1, 又 即:,∴, ∴C点的坐标为(1,2), 故反比例函数的, 再将点C(1,2)代入一次函数中, 即,解得, 故答案为:,. 22.(1)购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元; (2)该队共有6种购买方案,购买60个A品牌30个B 品牌的总费用最低,最低费用是8400元. 【详解】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x-20)元,根据题意,得 解得:x=100 经检验x=100是原方程的解 x-20=80 答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元. (2)设购买m个A品牌足球,则购买(90−m)个B品牌足球,则 W=100m+80(90-m)=20m+7200 ∵品牌足球的数量不小于品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元. ∴ 解不等式组得:60≤m≤65 所以,m的值为:60,61,62,63,64,65 即该队共有6种购买方案, 当m=60时,W最小 m=60时,W=20×60+7200=8400(元) 答:该队共有6种购买方案,购买60个A品牌30个B 品牌的总费用最低,最低费用是8400元. 23.【详解】(1)连接OD, ∵, ∴∠CAD=∠CDA, ∵OA=OD ∴∠OAD =∠ODA, ∵直线与相切于点, ∴∠CAO=∠CAD+∠OAD=90° ∴∠ODC=∠CDA+∠ODA=90° ∴CE是的切线; (2)连接BD ∵OD=OB ∴∠ODB=∠OBD, ∵CE是的切线,BF是的切线, ∴∠OBD=∠ODE=90° ∴∠EDB=∠EBD ∴ED=EB ∵AM⊥AB,BN⊥AB ∴AM∥BN ∴∠CAD=∠BFD ∵∠CAD=∠CDA=∠EDF ∴∠BFD=∠EDF ∴EF=ED ∴BE=EF (3)过E点作EL⊥AM于L,则四边形ABEL是矩形, 设BE=x,则CL=4-x,CE=4+X ∴(4+x)2=(4-x)2+62 解得:x= ∵∠BOE=2∠BHE 解得:tan∠BHE=或-3(-3不和题意舍去) ∴tan∠BHE= 24.(1);(2)(,0);(3)①见解析;②=或= 【详解】(1)∵点在抛物线上, ∴, 得到, 又∵对称轴, ∴, 解得, ∴, ∴二次函数的解析式为; (2)当点M在点C的左侧时,如下图: ∵抛物线的解析式为,对称轴为, ∴点A(2,0),顶点B(2,4), ∴AB=AC=4, ∴△ABC是等腰直角三角形, ∴∠1=45°; ∵将逆时针旋转得到△MEF, ∴FM=CM,∠2=∠1=45°, 设点M的坐标为(m,0), ∴点F(m,6-m), 又∵∠2=45°, ∴直线EF与x轴的夹角为45°, ∴设直线EF的解析式为y=x+b, 把点F(m,6-m)代入得:6-m=m+b,解得:b=6-2m, 直线EF的解析式为y=x+6-2m, ∵直线与抛物线只有一个交点, ∴, 整理得:, ∴Δ=b2-4ac=0,解得m=, 点M的坐标为(,0). 当点M在点C的右侧时,如下图: 由图可知,直线EF与x轴夹角仍是45°,因此直线与抛物线不可能只有一个交点. 综上,点M的坐标为(,0). (3)①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H, ∵,由(2)知∠BCA=45°, ∴PG=GC=1, ∴点G(5,0), 设点M的坐标为(m,0), ∵将逆时针旋转得到△MEF, ∴EM=PM, ∵∠HEM+∠EMH=∠GMP+∠EMH =90°, ∴∠HEM=∠GMP, 在△EHM和△MGP中, , ∴△EHM≌△MGP(AAS), ∴EH=MG=5-m,HM=PG=1, ∴点H(m-1,0), ∴点E的坐标为(m-1,5-m); ∴EA==, 又∵为线段的中点,B(2,4),C(6,0), ∴点D(4,2), ∴ED==, ∴EA= ED. 当点M在点C的右侧时,如下图: 同理,点E的坐标仍为(m-1,5-m),因此EA= ED. ②当点在(1)所求的抛物线上时, 把E(m-1,5-m)代入,整理得:m2-10m+13=0, 解得:m=或m=, ∴=或=.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开